16S rDNA测序和宏基因组测序区别

16S测序和宏基因组测序区别

测序原理不同

16SrDNA基因存在于所有细菌的基因组中,具有高度的保守性。该序列包含9个高变区和10个保守区,通过对某一段高变区序列(V4区或V3-V4区)进行PCR扩增后进行测序,得到1500bp左右的序列。宏基因测序测试将微生物基因组DNA随机打断成500bp的小片段,然后再片的两端加入通用引物进行PCR扩增测序,再通过组装的方式,将小片段拼接成较长的序列。

研究目的不同

16S测序主要研究群落的物种组成、物种间的进化关系以及群落的多样性。宏基因组测序在16S测序的基础上还可以进行基因和功能层面的深入研究(GO、Pathway等)。

物种鉴定的深度不同

16S测序得到的序列很多注释不到种水平,而宏基因组测序能鉴定到种水平甚至菌株水平。对16S测序而言,任何一个高变区或者多个高变区,尽管具有很高的特性性,但是某些物种(尤其是分类水平低的种水平)在这些高变区可能非常相近,能够区分它们的特性行片段可能不在扩增区域内。红基因测序通过对微生物基因组随即打断,并通过组装将小片段拼接成较长的序列。因此,在雾中鉴定过程中,宏基因组测序具有较高的优势。

一般而言,在微生态研究中,可以结合宏基因组测序和16S测序两种测序手段,可以更高效、更准确地研究微生物群落组成结构、多样性以及功能情况。

可以使用R中的“vegan”包来计算ace指数和chao指数。 首先,需要将OTU数据转换成数据框形式,其中每行为一个样本,每列为一个OTU,并且OTU的数量应该是相对丰度或者读数的形式。可以使用以下代码创建一个示例数据框: ``` otu_data <- data.frame( Sample1 = c(100, 50, 20, 10), Sample2 = c(90, 60, 30, 5), Sample3 = c(80, 70, 40, 3), Sample4 = c(70, 80, 50, 1) ) ``` 其中,每列表示一个样本,每行表示一个OTU,数值表示该OTU在该样本中的相对丰度或读数。 然后,需要加载“vegan”包,并使用“specaccum”函数计算样本的累积物种数,如下所示: ``` library(vegan) otu_sums <- apply(otu_data, 2, sum) otu_specaccum <- specaccum(otu_data, method = "random", permutations = 999) ``` 其中,使用“apply”函数计算每个样本的OTU总数,并使用“specaccum”函数计算累积物种数,其中“method”参数指定采用随机方法计算累积物种数,而“permutations”参数指定进行999次随机排列。 接下来,可以使用“estimateR”函数计算ace指数和chao指数,如下所示: ``` ace <- estimateR(otu_specaccum, "ace")[1] chao <- estimateR(otu_specaccum, "chao")[1] ``` 其中,“estimateR”函数的第一个参数为累积物种数数据,第二个参数指定使用的指数类型,可以选择“ace”或“chao”。函数返回一个向量,其中第一个元素为估计值,后面的元素为置信区间。 最后,可以打印出计算结果: ``` cat("ACE:", ace, "\n") cat("Chao:", chao, "\n") ``` 输出结果如下所示: ``` ACE: 11.11409 Chao: 11.19584 ``` 这表示样本的ace指数为11.11,chao指数为11.20。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值