Sparse Bayesian Learning Based Multichannel Radar Forward Looking Superresolution Imaging Considering Off-Grid Error
1. 研究目标与产业意义
1.1 研究目标
论文旨在解决多通道雷达前视成像中因离网格误差(Off-Grid Error)导致的超分辨率性能下降问题。传统超分辨率方法(如压缩感知、IAA等)假设目标严格位于预设成像网格上,而实际场景中目标位置可能偏离网格,导致网格失配(Grid Mismatch),进而引发虚假旁瓣和分辨率损失。论文通过稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)框架,将离网格误差建模为等效噪声,并联合估计散射系数和噪声参数,从而实现更鲁棒的超分辨率成像。
1.2 实际问题与产业意义
- 实际问题:前视雷达在自主着陆、导航等领域需高分辨率成像,但受平台尺寸限制,多通道雷达的方位分辨率不足。传统方法因离网格误差难以满足实际需求。
- 产业意义:提升分辨率可增强雷达在复杂地形(如山区、城市)中的目标识别能力,推动自动驾驶、无人机导航等领域的可靠性和安全性。
2. 创新方法与模型
2.1 核心思路与数学模型
提出了一种基于稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)的多通道雷达前视超分辨率成像方法,其核心创新在于将离网格误差(Off-Grid Error)建模为等效噪声,并通过贝叶斯框架联合估计散射系数与噪声参数。以下是具体建模步骤与公式解析:
2.1.1 信号模型与误差矩阵构建
原始信号模型(公式1-2):
假设目标位于预设网格时,接收信号可表示为:
S r m = ∑ k = 1 N ( e − j 2 π f 0 τ m k β k ) + n m ( 1 ) S r_{m} = \sum_{k=1}^{N} \left( e^{-j 2\pi f_0 \tau_{mk}} \beta_k \right) + n_m \quad (1) Srm=k=1∑N(e−j2πf0τmkβk)+nm(1)
矩阵形式为:
S r M × 1 = S M × N ⋅ β N × 1 + N M × 1 ( 2 ) S r_{M\times 1} = S_{M\times N} \cdot \beta_{N\times 1} + N_{M\times 1} \quad (2) SrM×1=SM×N⋅βN×1+NM×1(2)
离网格误差引入(公式3-4):
当目标偏离网格时,实际时延 τ ^ m k = τ m k + d / c \hat{\tau}_{mk} = \tau_{mk} + d/c τ^mk=τmk+d/c(公式3),导致误差矩阵 E = S ^ − S E = \hat{S} - S E=S^−S。成像模型更新为:
S r = S β + E β + N = S β + N ^ ( 4 ) S r = S\beta + E\beta + N = S\beta + \hat{N} \quad (4) Sr=Sβ+Eβ+N=Sβ+N^(4)
其中 N ^ = E β + N \hat{N} = E\beta + N N^=Eβ+N 为等效噪声,包含离网格误差和原始噪声的混合效应。
2.1.2 稀疏贝叶斯学习框架
先验分布假设:
-
散射系数 β \beta