Sparse Bayesian Learning-Based Multichannel Radar Forward-Looking Superresolution Imaging Considering Grid Mismatch
1. 研究目标与实际意义
1.1 研究目标
论文旨在解决多通道雷达前视超分辨率成像中因网格失配(Grid Mismatch)导致的成像性能下降问题。传统超分辨率方法(如压缩感知、IAA等)假设目标严格位于预设成像网格上,而实际场景中目标位置可能偏离网格,导致离网格误差(Off-Grid Error),进而引发虚假旁瓣和分辨率损失。论文提出了一种结合局部网格细化(Local Grid Refinement)、总最小二乘法(Total Least Squares, TLS)和稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)的综合方案,通过动态调整网格并估计误差矩阵,显著提升成像精度。
1.2 实际问题与意义
- 实际问题:前视雷达在自动驾驶、无人机导航等场景中需高分辨率成像,但受平台尺寸限制,多通道雷达的方位分辨率不足。传统方法因网格失配无法有效处理偏离网格的目标。
- 产业意义:提升分辨率可增强复杂地形(如城市、山区)中的目标识别能力,推动自动驾驶、无人机导航等领域的可靠性和实时性。
2. 创新方法与模型
2.1 核心思路与流程
论文提出了一种三阶段迭代方案:
- 局部网格细化:基于初步SBL估计结果,动态插入新网格点以逼近目标真实位置。
- 网格失配误差估计:使用总最小二乘法(TLS)估计误差矩阵,修正导向矩阵。
- 稀疏贝叶斯学习(SBL)迭代:结合修正后的导向矩阵,迭代优化散射系数与噪声参数。
2.2 关键公式与模型
2.2.1 信号模型与网格失配误差
原始信号模型(公式4):
S r m = ∑ k = 1 N ( e − j 2 π f 0 τ m k β k ) + n m ( 1 ≤ m ≤ M ) S r_{m} = \sum_{k=1}^{N}\left(e^{-j2\pi f_{0}\tau_{mk}}\beta_{k}\right) + n_{m} \quad (1 \leq m \leq M) Srm=k=1∑N(e−j2πf0τmkβk)+nm(1≤m≤M)
矩阵形式为:
S r M × 1 = S M × N ⋅ β N × 1 + N M × 1 ( 6 ) S r_{M\times 1} = S_{M\times N} \cdot \beta_{N\times 1} + N_{M\times 1} \quad (6) SrM×1=SM×N⋅βN×1+NM×1(6)
当存在网格失配时,实际时延为:
τ ^ m k = τ m k + Δ d c ( 25 ) \hat{\tau}_{mk} = \tau_{mk} + \frac{\Delta d}{c} \quad (25) τ^mk=τmk+cΔd(25)
误差矩阵