Nonlinear total variation based noise removal algorithms论文阅读

1. 论文的研究目标与意义

1.1 研究目标

论文的核心目标是提出一种基于非线性总变差(Total Variation, TV)最小化的约束优化算法,用于从含噪图像中恢复清晰图像。其核心思想是通过最小化图像的总变差范数(TV norm),同时结合噪声的统计特性(均值和方差约束),实现对噪声的有效抑制,同时保留图像中的边缘和细节特征。

1.2 实际意义

  • 图像去噪需求:噪声在图像获取、传输和处理过程中不可避免,传统方法(如L2范数最小化)易导致过度平滑或振荡伪影。
  • 产业应用:高精度图像处理(如医学成像、卫星遥感、自动驾驶)对噪声敏感,需非侵入式算法以保持关键几何特征。
  • 方法论创新:首次将TV范数与统计约束结合,为后续的稀疏优化和深度学习图像复原奠定了基础。

2. 论文的创新方法与核心公式

2.1 总变差最小化模型

论文提出的核心优化问题为:

目标函数 min ⁡ u ∫ Ω u x 2 + u y 2   d x   d y \min_{u} \int_{\Omega} \sqrt{u_x^2 + u_y^2} ~dx~dy minuΩux2+uy2  dx dy
约束条件

  1. 均值约束: ∫ Ω u   d x   d y = ∫ Ω u 0   d x   d y \int_{\Omega} u ~dx~dy = \int_{\Omega} u_0 ~dx~dy Ωu dx dy=Ωu0 dx dy
  2. 方差约束: ∫ Ω ( u − u 0 ) 2   d x   d y = σ 2 \int_{\Omega} (u - u_0)^2 ~dx~dy = \sigma^2 Ω(uu0)2 dx dy=σ2
2.1.1 欧拉-拉格朗日方程

通过拉格朗日乘子法,将约束条件整合到目标函数中,得到变分方程:
0 = ∂ ∂ x ( u x u x 2 + u y 2 ) + ∂ ∂ y ( u y u x 2 + u y 2 ) − λ 1 − λ 2 ( u − u 0 ) 0 = \frac{\partial}{\partial x}\left(\frac{u_x}{\sqrt{u_x^2 + u_y^2}}\right) + \frac{\partial}{\partial y}\left(\frac{u_y}{\sqrt{u_x^2 + u_y^2}}\right) - \lambda_1 - \lambda_2 (u - u_0) 0=x ux2+uy2 ux +y

### T-S模糊算法的非线性系统建模 #### 定义与基本原理 Takagi-Sugeno (T-S) 模糊模型是一种用于描述复杂动态系统的有效工具。该模型通过一组局部线性子系统来近似表示复杂的非线性行为,从而使得分析和控制器设计变得更加简单[^1]。 #### 数学表达形式 对于一个连续时间下的非线性系统 \( \dot{x}(t)=f(x(t),u(t)) \),其中\( x(t)\in R^n\) 是状态向量而 \( u(t)\in R^m\) 表示输入信号,则可以构建如下所示的一般化T-S模糊规则: 如果 \( z_1(t) \) 大约等于 \( M_{i1} \),... ,并且 \( z_r(t) \) 大约等于 \( M_{ir}\),那么有: \[ \begin{aligned} &\text { Rule } i:\\ &\quad \frac{\partial}{\partial t} X_i=A_iX+B_iU \\ \end{aligned} \] 这里 \( A_i,B_i \) 分别代表第 \( i \) 个规则对应的系数矩阵;\( Z=[z_1,\ldots,z_r]^T \) 称作前提变量(precondition variable)[^2]。 #### 加权平均融合机制 为了获得整个系统的全局动力学特性,在实际应用中通常采用加权求和的方式将各个局部线性的子系统组合起来形成最终的整体模型。具体来说就是计算所有激活程度之和作为分母,各条规则所对应的状态方程乘以其相应的隶属度函数值再除以前述总和即得到综合后的结果。 ```matlab % MATLAB code snippet to demonstrate the weighted average fusion mechanism. function [sys, dim_state, dim_input] = ts_fuzzy_model(z, Ai, Bi, mu) % Calculate total activation level sum tot_activation_level_sum = sum(mu); % Initialize system matrices with zeros sys.A = zeros(size(Ai, 1)); sys.B = zeros(size(Bi, 2)); for i = 1:length(mu) % Update global dynamics using local models' contribution according to their membership grade sys.A = sys.A + (mu(i)/tot_activation_level_sum)*Ai(:,:,i); sys.B = sys.B + (mu(i)/tot_activation_level_sum)*Bi(:, :, i); end dim_state = size(sys.A, 1); dim_input = size(sys.B, 2); end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值