pandas索引函数loc和iloc的区别


chatgpt生成

df.iloc[len(df)] 这样的写法有什么问题

df.iloc[len(df)] 这样的写法会引发 IndexError 错误,因为索引越界了。

在 Python 中,DataFrame 的索引是从 0 开始的,因此最后一行的索引应该是 len(df) - 1。如果你尝试使用 len(df) 作为索引,它会超出范围,导致错误。

如果要访问最后一行,你应该使用 df.iloc[-1],这将返回最后一行的数据。

df.loc[len(df)]df.iloc[len(df)] 的区别在哪

df.loc[len(df)]:

  • 使用loc属性来索引DataFrame时需要的是实际的索引标签,而不是位置。
  • 如果输入的索引标签行存在,将返回该行的数据,否则会引发KeyError错误。

df.iloc[len(df)]:

  • 使用iloc属性来索引DataFrame时输入的是位置索引,表示最后一行的位置加1。
  • 如果位置 len(df) 超出了DataFrame的有效位置范围,将引发IndexError错误。

通常情况下,要访问最后一行,应该使用 df.iloc[-1],因为它将始终返回最后一行的数据,而无需担心索引标签是否存在。如果你尝试使用 df.loc[len(df)],它会依赖于索引标签的存在,如果索引标签不是 len(df),将导致错误。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值