学习OpenCV——配置CUDA环境

博主尝试配置OpenCV的CUDA环境以利用GPU加速程序,但因实验室机器的显卡不支持CUDA导致失败。一周的努力虽未成功,但整理了配置过程中的参考资料和遇到的问题,供他人参考。主要步骤包括:参照两篇CSDN博客进行cmake安装,以及解决CMake生成过程中的文件复制错误。最后提到可能需要购买新机器以支持CUDA。
摘要由CSDN通过智能技术生成

大家都把GPU&CUDA说的很NB狠NB,于是,下一步想通过GPU加速程序运行。这一个星期,都在配置OpenCV的CUDA环境,今天终于以失败告终,原因是实验室的机器显卡不支持CUDA。。。伤不起啊,一星期啊!!!

支持CUDA的GPU:http://developer.nvidia.com/cuda-gpus

 

虽然,最终失败了,但是总归还是有收获的,现把它总结起来,提醒自己,也给大家一个借鉴:

1.借鉴:http://blog.csdn.net/shuxiao9058/article/details/7526795的文章,通过cmake安装opencv+tbb;

2.借鉴:http://blog.csdn.net/shuxiao9058/article/details/7529684的文章,通过cmake安装opencv+tbb+CUDA(注意cmake编译时选项);

3.在CMake生成过程中可能出现“could not copy from:D:\CMake 2.8\share\cmake-2.8\Templates\CMakeVSMacros2.vsmacros

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值