医疗图像论文笔记三:《HEp-2 Specimen Image Segmentation and Classification Using Very Deep Fully Convolutional》

该论文介绍了一种使用全卷积残差网络(FCRN)进行上皮细胞图像分割和分类的方法。通过改进ResNet,构建了88层的FCRN,包含Bottleneck和Residual in Residual(RiR)模块,利用反卷积恢复图像分辨率。数据增强策略包括S3R、S23R和SRM,以提高模型性能。实验结果显示,SRM数据增强策略提供最佳效果,而RiR模块在增加网络深度的同时减少了参数量,提升了效率。
摘要由CSDN通过智能技术生成

摘要: 论文提出了一种使用全卷积神经网络的模式识别系统,能同时完成人类上皮细胞样本图像的分割和分类问题。作者将残差网络ResNet改进为全卷积的的残差网络(fully convolutional residual network FCRN),使得网络能够完成语义分割任务,其次引入sand-clock形状的的残差块来提升FCRN的性能。

 

(一)网络结构

(1)Fully Convolutional ResNet(FCR)

          网络由88层卷积组成,每一个Bottleneck模块有3个卷积层,每一个Residual in Residual(RiR)有6个卷积卷积层,并且还有4个反卷积层。Bottleneck和RiR模块通过跳连的方式,将前向和后向信号从一个区域传播到其他区域。三个RiR模块与两个步幅为2的卷积组合,来减小输入特征图的分辨率。

          由于Conv1、最大池化和RiR模块的存在,输入图像的分辨率大小减小了32倍。作者通过应用反卷积来将特征图上采样到原来的大小,不同阶段的不同大小的特征图上采样系数分别为4,8,16,32,并且最后相加在一起来生成最后的概率图。引入BN来减少内部的 covariate shift,加速训练过程。深层的网络结构使得网络拥有更大的感受野,能包含更多的信息用于语义分割和分类。

 

(2)Residual in Residual(RiR)

         作者提出了一种既能增加网络深度,但是又不会使用更多的残差块的方法 RiR。通过用RiR模块取代ResNet-50中的bottleneck模块,使得网络的深度从50增加到88。由于原始ResNet中的前三个模块主要提取边缘信息,将它们切换到更深层次的体系结构会产生边际性能改进。 从而为他们保留原有的瓶颈架构。

        从图中可以看出,RiR有六个卷积层,分别为1x1和3x3,1x1卷积用于通道数的增加和减少,3x3卷积主要用于特征的提取。作者提出的RiR模块通过在典型bottleneck设计的剩余部分中连接一个shortcut来构造更深的层,避免梯度消失问题。 因此,RiR模块可以看作是bottleneck的扩展。

 

(二)数据增强

        作者应用了三种数据增强操作,分别是S3R,S23R,SRM

        S3R: 通过从每个HEP-2样本图像中随机裁剪20幅348x261子图像来增强数据集,从而产生20,160幅图像。 由于不同类型细胞的标本数量从10个到53个差异很大,因此为样本较少的细胞生成了更多的子图像,这进一步将数据集增加到27,440幅图像。 然后将增强训练集中的部分图像旋转90°、180°、270°,以减少子图像之间的相关性。

        S23R: 原始标本图像旋转20次,即。 每次旋转15°(除去90°、180°和270°),从每个旋转的标本图像中裁剪348x261子图像,形成一组30320幅图像。 结合从S3R增强的数据集,训练集被增强到57,760幅图像。

        SRM:旋转角度减小到10°(除去90°、180°和270°),并且采用镜像操作。 为了平衡来自不同细胞模式的训练图像的体积,从旋转的细胞图像中裁剪的子图像数量相应地变化。 然后将生成的图像集与来自S23R的图像集结合起来,形成一个包含106272幅图像的增强训练集。

       

        考虑到原始ICPR2014数据集中样本图像的对比度比较低,作者做了图像的预处理来提升图像的对比度,其中 I 为训练图像

                                          

(三)网络训练

           batchsize=128,初始学习率=0.05,学习率随后减小为0.01,衰减因子gamma=0.1,训练集和验证集的比例为8:2

           使用softmax损失函数来衡量模型的分类性能,网络在6个epochs训练后收敛

                                  

(四)图像分类

                                  

           测试的样本图像被分为4x4个子图送入网络进行分类。FCRN对图像的每个像素进行预测,总共为八个类别,七种不同颜色的类别和背景类了,最后的检测结果是通过将子图拼接起来得到的。

 

(五)评定标准

           细胞分割:

                                 

          样本分类:

                                

 

(六)不同数据增强策略的结果

                        

                                         

         实验结果表明,SRM数据增强策略有着最好的效果。但是S23R与SRM有着很高的相关性,这导致了从S23R到SRM的精度提升空间变小。并且相比于S23R而言,考虑到训练时间消耗和性能提升的权衡,SRM并不是一个经济的数据增强方法。

 

(七)RiR 模块

                              

         FCRN-50和FCRN-101是由原始ResNet转换得来的,而FCRN-88添加了RiR模块。由图可知,当层数从50层增加到101层时,训练误差被发现减小,这表明更深的网络学习更好的目标表示特征映射。而FCRN-88比FCRN-101的验证误差低0.015。 由于FCRN-101比FCRN-88涉及更多的层,分类误差的降低被认为是在剩余的残差模块中产生的。

 

         作者提出的RiR模块有着sand-clock结构,这种结构增加了网络的深度,并且由于中间的间距层的宽度被压缩了,从而导致参数量相比于左边的级联bottleneck模块更少。

         作者在单块TITAN X显卡上做实验表明,同样训练6个epochs的情况下,FCRN-88的训练时间比FCRN-101要少1.8个小时,并且FCRN-88的网络深度是FCRN-50的1.76倍,只增加了16.7%的网络参数大小,因此RiR模块相比于原始Resnet来说是一个高效的方法。

         

 

单词学习:

Epithelial 上皮的、皮膜的  autoimmune 自身免疫的  leave-one-out 留一法

Fluorescence 荧光   screening method 筛选法  antibody 抗体  laborious 费力的、辛苦的

Hybrid 混合  morphological 形态学的  a sort of 一种   Nuclear membrane (细胞)核膜

The testing specimen image 测试样本图像  Mitotic spindle 有丝分裂纺锤体   contest 比赛

Nucleolar 核仁  Golgi 高尔基体  Henceforth 从今以后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值