图像处理基础01-直方图均衡化的推导和编程实现

本文介绍了直方图均衡化的基本概念,它通过改变图像像素值分布,增强图像对比度,使图像更清晰。文章详细推导了变换公式T(r)=(L-1)∫0rpr(w)dw,并讨论了编程实现,包括Python和OpenCV以及纯C语言的方法。直方图均衡化在图像处理中有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

  • 直方图均衡化是将图像转化为另一幅图像,转化后图像像素值的分布更接近均匀分布。原本图像的像素值(灰度值)可能集中在某一区域,这样我们看到的图像其实是比较模糊的,灰度没有层次感。直方图均衡化能够增加图像灰度值的动态范围,从而达到增强图像对比度的目的,使图像看起来更清晰。
  • 直方图均衡属于空域图像增强,但并没有考虑图像的空间信息。但是又能得到很好的视觉效果,很有意思。
  • 直方图相同时,图像不一定相同。一个典型例子就是图像翻转后,直方图相同,但图像不同。

2 推导

  • 首先明确我们的目的是得到一个变换关系来对图像进行变换,具体为对所有值为r的像素点,将r改为s:
    s = T ( r ) s = T(r) s=T(r)
    通过变换,改变了每种灰度级的个数,变换后图像的灰度级符合均匀分布。
  • 冈萨雷斯的书里给了几个公式,但没有推导过程,直接给出了 T ( r ) T(r) T(r) 的公式(书中的式3.3-4),并做了证明,证明使用(3.3-4)变换后的图像,灰度级符合均匀分布。其实根据证明过程也可以知道 T ( r ) T(r) T(r) 是如何得出的。
  • 那么 T ( r ) T(r) T(r) 是如何得出的? 用 p r ( r ) p_r(r) pr(r) p s ( s ) p_s(s) ps(s) 表示r和s的概率密度(PDF),则有以下性质(3.3-3):
    p s ( s ) d s = p r ( r ) d r p_s(s)ds = p_r(r)dr ps(s)ds=pr(r)dr
    p s ( s ) d s p_s(s)ds ps(s)ds的意义是区间 ( s , s +
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值