论文翻译: Adaptive implicit friends identification over heterogeneous network for social recommendation

该论文提出了一种新方法,通过自适应识别潜在朋友以增强社会推荐系统的可靠性。在传统推荐系统中,显式社交关系的使用可能导致数据稀疏问题,但可能包含噪声。论文利用异构信息网络(HIN)捕获用户相似度,通过元路径学习识别隐含的朋友关系,以适应性地调整每个用户的隐含朋友数量,从而提高推荐效果。实验表明,这种方法优于仅使用显式关系的推荐系统,尤其在处理冷启动用户和减少噪声影响方面表现出优势。
摘要由CSDN通过智能技术生成

论文: Adaptive Implicit Friends Identification over Heterogeneous Network for Social Recommendation (CIKM 2018)
下载链接: https://dl.acm.org/citation.cfm?id=3271725

在看着篇论文前,可能需要对 二分网络(bipartite network)/二分图 (bipartite graph)异构信息网络 有基本的了解。

  • 二分图(bipartite graph)
    二分图指的是,一个图中,顶点可以被划分为两个不相交的独立的集合 U U U V V V,任意边都从集合 U U U的顶点 指向 集合 V V V的顶点。

  • 异构信息网络 (Heterogeneous Information Network) :
    T V T_V TV 表示对象(也就是节点)v 所属于的集合类型, T E T_E TE表示边 e e e 所属于的集合类型。当 ∣ T E ∣ + ∣ T V ∣ > 2 |T_E| + |T_V| > 2 TE+TV>2时,也就是对象的集合类型大于1或边的集合类型大于1时,网络 H = ( V , E , T ) H = (V, E, T) H=(V,E,T) 就称为异构信息网络。 元路径指的是从起点,经过若干节点,走到终点的路径 (详细点的说明看3.1节)。
    (如果两条边连接的起始节点和终止节点的type都相同,则这两条边是同一种类型)

ABSTRACT

Abstract
在线社交平台上清晰可见的社交关系(explicitly observed social relations),已经被广泛的融入到了传统的推荐系统中,以缓解(mitigate) 数据稀疏的问题。但是直接使用这种观察到的关系,可能会导致较差(inferior)的表现,因为观察到的关系可能是unreliability(比如噪声) (没懂什么意思,为什么观察到的不可靠?表面兄弟?)。 因此,发现用户之间的可靠关系,在social recommender systems中非常重要。

在这篇论文中,作者提出了一种新的方法来自适应的识别潜在的朋友,从而发现更可信的用户关系。潜在朋友(implicit friends)指的是,那些有相似品味(tastes),但是在社交关系的网络拓扑结构上可能是很疏远的人。

为了每个用户找到implicit friends,我们首先要把整个系统作为一个异构信息网络(heterogeneous information network, HIN),然后通过嵌入表征学习(embedding representation learning)来捕获用户相似度。最终,我们的方法自适应地将不同数量的相似用户合并为每个用户的implicit friends,以减轻不可靠的社会关系的不利后果,从而获得更有效的推荐。三个真实数据集上的实验证明了本方法的优越性,并解释了为什么 implicit friends 能够帮助提高social recommendation的性能。

(我的理解是,不可靠的关系,unreliability指的是,有些人在地域上相近,或者上有共同的朋友,但有不同的品味。所以这样的信息,不适合做推荐。)

1 INTRODUCTION

推荐系统的出现和发展,成功地缓解了信息过载(information overload)的问题。但是,在传统的推荐系统中,大部分用户通常只消费数百万项(items)中的很少一部分,因为数据的稀疏性,导致了较差的推荐精度(inferior recommendation accuracy)。因为在线社交平台的快速发展,观察到的社交关系,现在可以利用清晰可见的社会关系来缓解传统推荐系统所面临的数据稀疏问题(直观的感受就是user-item矩阵的稀疏性),因为用户的喜好,可以从他们朋友的喜好中推断出来
(这里我理解的一个例子是,对于协同过滤,可以不再算用户相似度了,而是直接把有好友关系的用户,作为相似用户)

social recommender systems 就是因为这个想法出现的。然而,最近的研究表明,social recommender systems有以下几个问题:
(1) 在真实的推荐系统,显式的(explicit)社会关系并不总是可用的,而且通常是很稀疏的;
(2)由于垃圾邮件发送者(spammers)和机器人(bots)的存在,社会关系可能非常嘈杂。

除此之外,社会关系在不同的语境中有不同的解释。例如,两个亲密的朋友,可能会在一个电影上达成共识(consensus),但是在买衣服上有不同意见。如果没有 进一步的过滤,显式的社交关系可能会产生负面效果。

现有的大部分基于 矩阵分解(matrix factorization) 的social recommender systems,都是直接把 显式的社会关系 集成到一起。因此,他们都很可能受到上面提到的情况的限制。

此外,上述方法基本上基于这样一种假设,有连接的用户有相似的品味,而未连接的用户更可能有不同的偏好。

但实际上,社交网络上相距很远的用户(应该是指在网络上完全没有交集的用户),也就是被称为 implicit friends的用户,可能有更相似的品味。

尽管user-item bipartite network (user-item 显然可以表示成一个二分网络,users和items分别表示两个不相交的集合) 和user social network是两个不同的网络,具有不同类型的nodes和connections,但是由于用户同时参与到这两个网络中,所以他们是内在相关(inherently correlated)的。因此,这两个网络共享丰富的信息,把他们拼接成一个 异构信息网络(HIN) 是一个很好的选择,之后再对这个异构信息

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值