【RAG提升技巧】查询改写HyDE

简介

提高 RAG 推理能力的一个好方法是添加查询理解层 ——在实际查询向量存储之前添加查询转换。以下是四种不同的查询转换:

  • 路由:保留初始查询,同时查明其所属的适当工具子集。然后,将这些工具指定为合适的选项。
  • 查询重写:维护选定的工具,但以多种方式重新编写查询,以将其应用于同一组工具。
  • 子问题:将查询分解为几个较小的问题,每个问题针对由其元数据确定的不同工具。
  • ReAct Agent 工具选择:根据原始查询,确定要使用的工具并制定要在该工具上运行的特定查询。

HyDE来自于Precise Zero-Shot Dense Retrieval without Relevance Labels,这篇文章主要做zero-shot场景下的稠密检索,通过借助LLM的力量不需要Relevance Labels,开箱即用。作者提出Hypothetical Document Embeddings (HyDE)方法,即“假设”文档嵌入。具体的做法是通过GPT生成虚构的文档,并使用无监督检索器对其进行编码,并在其嵌入空间中进行搜索,从而不需要任何人工标注数据

模型结构如下图所示,HyDE将密集检索分解为两个任务,即 instruction-following的LM生成任务和对比编码器执行的文档相似性任务。

paper:https://arxiv.org/pdf/2212.10496
code:https://github.com/texttron/hyde

原理以及实现

典型的密集信息检索过程包括以下步骤:

  • 将查询和文档转换为嵌入(向量)
  • 计算查询和文档之间的余弦相似度
  • 返回余弦相似度最高的文档

    通过 HyDE,query embedding我做了一些改进。首先让 LLM 生成回答查询的文档,然后将生成的虚拟答案转换为嵌入,而不是直接将查询转换为嵌入。


我们在LangChain上实际使用一下。

from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import LLMChain, HypotheticalDocumentEmbedder
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from dotenv import load_dotenv
# set the environment variables
load_dotenv()

# prepare the prompt template for document generation
Prompt_template = """回答问题。
问题:{question}
回答:”””
llm = ChatOpenAI()
# multi_llm = ChatOpenAI(n=4)
prompt = PromptTemplate(input_variables=["question"], template=prompt_template)
llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=True)

# initialize the hypothetical document embedder
base_embeddings = OpenAIEmbeddings()
embeddings = HypotheticalDocumentEmbedder(llm_chain=llm_chain, base_embeddings=base_embeddings)

result = embeddings.embed_query("塞尔达传说的主角是谁?")
len(result)
### RAG 查询语句的优化与改写 #### 查询生成/改写的原理 为了提高检索效率和准确性,在RAG框架下,查询生成阶段利用LLM模型对用户的初始查询进行改写,从而生成多个版本的新查询。这些新查询旨在从不同角度捕捉用户意图,进而提升后续检索的质量[^1]。 ```python def generate_rewritten_queries(initial_query, llm_model): """ 对输入的初始查询进行多次改写,返回一系列新的查询列表 参数: initial_query (str): 用户提出的原始问题 llm_model : 已训练好的大型语言模型实例 返回: list of str: 多个经过改写查询字符串组成的列表 """ rewritten_queries = [] # 基于llm_model生成多种可能的询问方式 for _ in range(5): # 控制生成数量 new_query = llm_model.rewrite_query(initial_query) rewritten_queries.append(new_query) return rewritten_queries ``` #### 向量搜索过程中的应用 对于每一个由上述方法产生的查询变体,系统会执行一次独立的向量匹配操作来获取最接近目标的信息片段。通过这种方式,即使原问题是模糊不清或是表述不够精确的情况下,也能找到更多潜在的相关资料作为候选答案源。 #### 排序机制的作用 值得注意的是,在完成多轮次的向量查找之后,RAG-Fusion引入了一种特殊的排序策略——即所谓的“倒数排名融合”。这一技术能够综合考虑各个查询路径下的文档关联度得分,并据此调整最终呈现给下游模块处理的结果顺序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值