SSD算法理解及利用SSD训练自己的数据

9人阅读 评论(0) 收藏 举报
分类:

一. SSD算法理解

参考博客:

https://blog.csdn.net/u014380165/article/details/72824889

https://blog.csdn.net/wfei101/article/details/78176322

二. 安装并训练自己的数据

1.在https://github.com/weiliu89/caffe/tree/ssd 下载了.zip包和数据集及预训练模型,放在/home/iscas/SSD文件夹下
解压到当前目录:
cd ~/SSD
unzip caffe-ssd.zip
2.
cd ~/SSD/caffe-ssd
cp Makefile.config.example Makefile.config

针对需求修改几项即可,如下:
a.若使用cudnn,则将:#USE_CUDNN := 1 修改成:USE_CUDNN := 1
b.若要使用python来编写layer,则将:#WITH_PYTHON_LAYER := 1去掉#号修改为:WITH_PYTHON_LAYER := 1
c.修改成:USE_OPENCV := 1, USE_LEVELDB := 1, USE_LMDB := 1

3.
make -j16
报错:
/usr/include/boost/property_tree/detail/json_parser_read.hpp:257:264: error: ‘type name’ declared as function returning an array
make: *** [.build_release/cuda/src/caffe/layers/detection_output_layer.o] Error 1
解决方案参考以下博客:
https://blog.csdn.net/wei_guo_xd/article/details/73729472

4.
make clean
make -j16
报错:/usr/bin/ld: cannot find lopenblas
解决方案:参考https://blog.csdn.net/u014696921/article/details/56678520
apt-get install liblapack-dev liblapack3 libopenblas-base libopenblas-dev

5.
make clean
make -j16
编译成功
make pycaffe(注意这里编译前并没有下载相应的库,因为之前已经编译过pycaffe了,编译后也并没有设置环境变量)
make test -j16
make runtest -j16

6.解压数据集
将下载好的预训练模型VGG_ILSVRC_16_layers_fc_reduced.caffemodel放在/home/iscas/SSD/caffe-ssd/models/VGGNet文件夹下
将下载好的数据放在/home/iscas/SSD/caffe-ssd/data文件夹下
目前在/home/iscas/SSD/caffe-ssd文件夹下,
  cd data
  tar -xvf VOCtrainval_11-May-2012.tar
  tar -xvf VOCtrainval_06-Nov-2007.tar
  tar -xvf VOCtest_06-Nov-2007.tar
7.
到caffe-ssd目录下: cd ..
更改/home/iscas/SSD/caffe-ssd/data/VOC0712文件夹下create_list.sh中的root_dir=$HOME/SSD/caffe-ssd/data/VOCdevkit/

更改/home/iscas/SSD/caffe-ssd/data/VOC0712文件夹下create_dat.sh中的data_root_dir="$HOME/SSD/caffe-ssd/data/VOCdevkit"

然后执行:
./data/VOC0712/create_list.sh
执行:
./data/VOC0712/create_data.sh
报错:AtributeEerror:'module' object has no attribute 'LabelMap'
解决方案:参考https://blog.csdn.net/wei_guo_xd/article/details/73729472
或者参考:https://github.com/weiliu89/caffe/issues/4
重新配置了python的环境:
    a. sudo gedit ~/.bashrc
    b. export PYTHONPATH=/home/iscas/SSD/caffe-ssd/python
    c. source ~/.bashrc

8.训练
python examples/ssd/ssd_pascal.py

报错:配置SSD-caffe测试时出现“Check failed: error == cudaSuccess (10 vs. 0) invalid device ordinal”解决
解决方案参考:https://blog.csdn.net/xunan003/article/details/78433383



查看评论

用SSD框架训练自己的数据集

本文介绍如何使用SSD训练自己的数据集,内容包括数据集的转化,使用SSD进行训练 1、VOC数据集的介绍 VOC的数据格式: (1)annotation中保存的是xml格式的label信...
  • chris_pei
  • chris_pei
  • 2018-01-17 16:52:06
  • 392

SSD框架训练自己的数据集

SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证。本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括:1 数据集的标注2 数据集的转换3 使用SSD如何...
  • u014696921
  • u014696921
  • 2016-11-26 19:08:03
  • 16109

使用SSD检测训练自己的数据

上一篇博客讲到如何制作自己的训练数据集,这一篇博客讲讲如何使用SSD训练自己的数据. 在训练数据做好后。训练程序为/examples/ssd/ssd_pascal.py,运行之前,我们需要修改相关路径...
  • jx232515
  • jx232515
  • 2017-12-03 22:39:16
  • 191

ssd训练自己的数据集

1.准备数据集   利用labelimg 工具得到图片和对应的xml文件 然后将数据及利用编程得到train,trainval,val,test等txt文件,其中存储的是图片的名字没有后缀的,例如图...
  • tmosk
  • tmosk
  • 2017-09-05 16:44:45
  • 431

ssd训练自己的数据(物体检测),并测试模型

写在前面:首先,你安装了ssd,并测试了VOC数据 ********************************************************* 第一部分:数据准备...
  • yu734390853
  • yu734390853
  • 2018-03-08 11:08:45
  • 300

用SSD训练自己的数据集

1构建 数据集 先来看一下我们构建数据集合应该是什么样的,假设总数据为1000张。 为了方便,我们将数据放在/home/bingolwang/data 文件夹下。/home/bingol...
  • dongfang1984
  • dongfang1984
  • 2017-07-07 11:11:09
  • 1185

Tensorflow-SSD测试及训练自己的数据集

一、软件 Python + Tensorflow + OpenCV3二、安装测试 1、ssd_notebook.ipynb测试 (1)下载程序包并解压。 源代码GitHub: balanca...
  • ei1990
  • ei1990
  • 2017-07-18 10:56:18
  • 5870

SSD配置、训练、测试以及应用到自己的数据集

git clone https://github.com/weiliu89/caffe.git (上面的版本可能存在问题,最好是在https://github.com/weiliu89/caffe/...
  • wei_guo_xd
  • wei_guo_xd
  • 2017-06-25 20:54:43
  • 2916

目标检测SSD:训练自己的数据集

最近一直在搞object detection玩,之前用的是faster-rcnn,准确率方面73.2%,效果还不错,但是识别速度有点欠缺,我用的GPU是GTX980ti, 识别速度大概是15fps.最...
  • wfei101
  • wfei101
  • 2017-12-02 10:17:57
  • 923

windows下SSD训练自己的数据

标注软件:https://github.com/tzutalin/labelImg 使用这个软件需要python2.7以上,pyqt4,lxml。 先安装anaconda2.(python2.7)...
  • d408550969
  • d408550969
  • 2017-07-02 16:04:49
  • 1188
    个人资料
    持之以恒
    等级:
    访问量: 13万+
    积分: 2565
    排名: 1万+
    最新评论