基于MQTT的RPC协议

RPC 是一种基于request/response 模式的分布式协议。而MQTT 是基于pub/sub模式的协议。是否能够将这两种协议相结合,实现RPC Over MQTT ?我并没有发现由比较知名的RPC over MQTT协议。于是,自己着手设计一个极简的RPC Over MQTT 协议。

本文介绍modular-2 Edge 中,使用MQTT 协议实现RPC 的方法。

 

 

在modular-2 Edge 微服务架构中,提供了三种RPC 形式,它们分别是:

1 websocket RPC

2 MQTT RPC

3 HTML Restfull RPC

 

虽然三种方式的协议不同,但是消息体(message body )是一样的都是json格式的消息体,可以相互转换。当一个App 通过MQTT 客户端发布了一个RPC 消息后,如果该RPC 是websocket 类型的,会被base service 自动接收,并且通过websocket 转发到相关的App。

同样地,如果一个websocket RPC ,会被base service 发送给MQTT Broker ,有它转换成为MQTT 消息,发送给相关的App。

topic语法

MQTT 是基于topic 订阅和发布的通信方式。实现MQTT 协议的难点是设计一个合适的topic 命名方式和语法。

对于一个复杂系统,topic 命名更具有挑战性。

在实现RPC Over MQTT时,需要有一个唯一的topic 来标识一个RPC 调用和结构。它需要反映如下信息

目标名称 发往的App名称

信源名称 发送App 的名称

RPC方法 虽然在消息体的json 描述中含有RPC 但是为了订阅和发布的方便。在topic 中也需要包含了method 的名称。

 因此,我们设计的topic 格式为:

<destination>/<originator>/<method>

其中

<destination> 接收者的App名称

<originator>  发送者的App名称

<method>方法的名称

 

通知

<destination><originator><method><inf>

 为什么要在topic 中包含目标和信源的名称呢?

实例:

App 注册 (register App)

microservice1/gpio/register

数字IO 写(DigitalOut.Write)

microservice1/gpio/digitaloutwrite

数字IO翻转(DigitalOut.flipflop)

microservice1/gpio/digitaloutflipflop

模拟量输入

microservice1/vibration/analogread

modbus请求

microservice1/weather/modbusrequest

 

消息体

MQTT 的payload 采用了json 格式的rpc,例如

jsonrpc={

method:“microservice/digitalOut.write";

mode:2;

params:{

value[1,0]

}

id:1

}

处理流程

  1 baseservice 订阅

  • 订阅baseservice 的RPC。

subscribe(“baseservice/#”)

  • 订阅所有websocket RPC

当一个websocket 的RPC 注册时,要向MQTT Broker 订阅该RPC.例如:

subscribe(“microservice/+/digitalOut.write);

2 App 订阅发送给它的MQTT 消息,如果App 是gpiomqtt,那么它会订阅:

       subscribe(“”gpiomqtt/#”);

  3 MQTT 命令出错

baseservice 会向App 发送 error 消息,topic为

<appname>/<baseservice>/error

消息体是json 格式的出错信息。

结论

在modular-2 微服务架构中,采用了最简单的MQTT topic 设计,实现了RPC over MQTT 协议。并且和websocket RPC 兼容。MQTT 的应用中,应该避免MQTT topic 的随意性,将topic 减少到最简单。是一个好的方法。

<think>好的,我现在需要回答用户关于基于libuv的RPC框架实现示例的问题。首先,我需要理清用户的需求。用户提到他们想找一个基于libuv的RPC框架,并希望看到实现示例。根据用户提供的引用内容,他们之前封装过libuv用于CPU密集型分布式计算,并且对跨平台、低延迟(1毫秒以下)有要求。因此,回答需要结合这些点,给出具体的实现思路和示例代码。 首先,我需要回忆libuv的基本特性和它在RPC框架中的作用。libuv是一个跨平台的异步I/O库,常用于Node.js等环境,支持事件驱动的网络通信。对于RPC框架来说,libuv可以处理高并发的网络请求,适合实现高性能的通信层。 接下来,用户提供的引用中有几个相关的项目,比如Uragano基于dotnetty,而用户自己可能更倾向于C/C++的实现,因为引用了g++编译命令和C++代码。因此,示例代码可能需要用C或C++来展示如何利用libuv构建RPC框架的基础结构。 然后,我需要考虑RPC框架的核心组件:序列化、网络通信、请求/响应处理、路由等。用户提到需要跨平台和低延迟,所以序列化部分可能需要高效的库,比如Protobuf或FlatBuffers。网络通信方面,libuv的事件循环和非阻塞I/O是关键,需要展示如何设置TCP服务器和客户端,处理连接和消息解析。 用户引用的示例中有关于KCP(ikcp)和HTTP解析器的内容,可能用户对可靠传输和协议解析也有兴趣。不过,主要焦点应放在libuv的集成上。另外,用户提到的MQTT解包设置可能涉及消息格式的处理,这部分可以通过自定义协议头部来实现,比如长度字段或固定格式。 接下来,我需要构建一个简单的示例框架。可能需要分步骤说明:初始化libuv事件循环、创建TCP服务器、处理连接、读取数据、解析请求、调用对应的方法,然后发送响应。代码示例需要展示这些步骤的关键部分,比如设置server,处理on_connection回调,读取数据时的分配器和读取回调,以及如何分发处理请求。 同时,用户可能需要了解如何跨平台编译和依赖管理,比如引用中的g++命令包含了libuv的库路径,所以示例可能需要提到编译选项和依赖库的链接。 在实现细节中,数据包的拆包问题需要注意。用户引用了UNPACK_BY_LENGTH_FIELD的方式,所以在示例中可能需要展示如何处理消息边界,比如在消息头部添加长度字段,读取时先读长度,再读完整的数据体。 最后,生成相关问题需要考虑用户可能遇到的后续问题,比如性能优化、序列化选择、错误处理、多线程支持等,这些都是构建RPC框架时常见的挑战。 总结下来,回答的结构应该是:先介绍基于libuv的RPC框架实现的关键点,然后分步骤说明并附上代码示例,最后生成相关问题。需要确保代码示例正确使用libuv的API,比如uv_tcp_init, uv_listen, uv_read_start等,并处理回调函数。同时,引用相关的参考资料,如用户提供的引用中的内容,来支持实现的可行性和优化方向。</think>### 基于 libuv 的 RPC 框架实现示例 #### 核心实现思路 1. **网络通信层**:利用 libuv 的异步 I/O 和事件循环实现高性能 TCP 通信。 2. **协议设计**:自定义二进制协议(例如头部包含消息长度字段),解决 TCP 粘包/拆包问题[^5]。 3. **序列化**:选择高效序列化方案(如 Protobuf、FlatBuffers)。 4. **路由分发**:通过消息 ID 映射到具体服务方法。 #### 关键代码示例(C++实现) ```cpp #include <uv.h> #include <functional> #include <unordered_map> // 定义 RPC 请求/响应结构体 struct RpcMessage { uint32_t msg_id; uint32_t body_length; char* data; }; class RpcServer { public: void Start(int port) { uv_tcp_init(uv_default_loop(), &server_); sockaddr_in addr; uv_ip4_addr("0.0.0.0", port, &addr); uv_tcp_bind(&server_, (const sockaddr*)&addr, 0); uv_listen((uv_stream_t*)&server_, 128, [](uv_stream_t* server, int status) { // 接受新连接 uv_tcp_t* client = new uv_tcp_t; uv_tcp_init(uv_default_loop(), client); uv_accept(server, (uv_stream_t*)client); // 开始读取数据 uv_read_start((uv_stream_t*)client, [](uv_handle_t* handle, size_t size, uv_buf_t* buf) { buf->base = new char[size]; buf->len = size; }, [](uv_stream_t* stream, ssize_t nread, const uv_buf_t* buf) { // 处理接收数据 if (nread > 0) { ProcessRpcRequest((uv_tcp_t*)stream, buf->base, nread); } delete[] buf->base; }); }); uv_run(uv_default_loop(), UV_RUN_DEFAULT); } private: uv_tcp_t server_; std::unordered_map<uint32_t, std::function<void(RpcMessage*)>> handlers_; static void ProcessRpcRequest(uv_tcp_t* client, char* data, size_t len) { // 解析消息头(示例使用固定长度头) RpcMessage msg; memcpy(&msg.msg_id, data, 4); memcpy(&msg.body_length, data+4, 4); msg.data = data + 8; // 查找处理函数并执行 auto handler = GetHandler(msg.msg_id); handler(&msg); // 发送响应(需实现序列化逻辑) SendResponse(client, msg); } }; ``` #### 关键实现步骤 1. **事件循环初始化**:`uv_default_loop()` 创建默认事件循环 2. **TCP服务器配置**:通过 `uv_tcp_bind` 和 `uv_listen` 设置监听端口 3. **异步读取处理**:使用 `uv_read_start` 实现非阻塞数据接收 4. **协议解析**:按照 `长度字段` 方式拆解数据包 5. **多路复用**:通过 `msg_id` 映射不同服务方法 #### 性能优化建议 1. **内存池管理**:预分配缓冲区减少内存碎片[^4] 2. **零拷贝技术**:通过 `uv_buf_t` 结构直接操作接收缓冲区 3. **批量写操作**:合并多个响应数据后一次性发送 4. **多线程扩展**:配合 libuv 的 `uv_queue_work` 实现线程池[^3]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值