基于 Python 的 Bilibili 评论分析与可视化

一、项目概述

本项目利用 Python 对 Bilibili (哔哩哔哩)平台上的视频评论数据进行爬取、清洗和分析,并通过可视化展示数据的主要特征。我们通过以下几个步骤实现了这一过程:

  1. 数据爬取:使用 Bilibili 提供的 API 获取指定视频的评论数据。
  2. 数据清洗:对评论内容进行文本预处理,清除无关信息,并对 IP 地址进行地区解析。
  3. 数据分析:对评论内容、点赞数等信息进行统计分析,挖掘出有意义的趋势。
  4. 数据可视化:使用 pyecharts 库生成词云图、柱状图、折线图等多种图表,展示评论的分布与趋势。

本文将详细介绍每一步的实现过程,以及如何利用 Python 工具处理和分析海量的网络评论数据。
在这里插入图片描述

二、数据爬取

首先,我们使用 Bilibili 提供的 API 接口来获取视频的评论数据。Bilibili 的 API 支持根据视频 ID(oid)、页码(pn)等参数获取评论信息。我们通过构造请求 URL 发送 HTTP 请求来抓取数据。

以下是爬虫代码的核心部分:

import requests
import csv
import time
import random
from tqdm import tqdm

# 设置请求头
header = {
    "Cookie": "你的 Cookie 值",
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
}

# 视频 ID 列表
list_id = [898762590]

# 数据爬取过程
for i in tqdm(list_id):
    rows = []
    for p in tqdm(range(342, 801)):
        try:
            html = requests.get(url, headers=header)
            data = html.json()
            # 提取评论数据
            for reply in data['data']['replies']:
                username = reply['member']['uname']
                comment = reply['content']['message']
                ctime = trans_date(reply['ctime'])


        # 保存数据到 CSV
        with open(f'bilibili_comments_{i}.csv', 'a', newline='', encoding='utf-8') as file:
            writer = csv.writer(file)
            if file.tell() == 0:
                writer.writerow(['Username', 'Comment', 'Timestamp', 'Like Count', 'IP Location'])
            writer.writerows(rows)

在此代码中,我们指定了视频的 ID 和页码范围(342801),并通过循环逐页爬取评论。每一条评论数据包括用户名、评论内容、时间戳、点赞数和 IP 地址。

三、数据清洗

数据爬取完成后,我们对获取的评论数据进行清洗。主要的清洗任务包括:

  1. 去除无关内容:移除 URL、标点符号、特殊字符等。
  2. 分词与停用词过滤:使用 jieba 对中文评论进行分词,并过滤掉无意义的停用词。
  3. IP 地址地区解析:对 IP 地址中的地理位置进行解析,将其统一成省份、市区等格式。
  4. 时间格式转换:将评论时间戳转换为标准的时间格式,便于后续的时间序列分析。

数据清洗的核心代码如下:

import re
import jieba
from zhon.hanzi import punctuation as zh_punctuation

def clean_text(text):
    # 去除 URL 和特殊字符
    text = re.sub(r'http\S+', '', text)
    text = re.sub(f"[{zh_punctuation}]", "", text)  # 去除中文标点
    text = re.sub(r'[.,!?]', '', text)  # 去除英文标点
    text = re.sub(r'[^a-zA-Z0-9\u4e00-\u9fa5\s]', '', text)  # 保留字母、数字和中文
    text = ' '.join(text.split())  # 去除多余的空格
    return text

# 停用词处理
def load_stopwords(filepath):
    with open(filepath, 'r', encoding='gbk') as f:
        stopwords = f.read().splitlines()
    return stopwords

# 文本预处理
def preprocess_text(text, stopwords):
    words = jieba.cut(text)
    return [word for word in words if word not in stopwords and len(word) > 1]

df['Comment'] = df['Comment'].apply(clean_text)
stopwords = load_stopwords('./stop_word.txt')
df['Cleaned_Comment'] = df['Comment'].apply(lambda x: preprocess_text(x, stopwords))
四、数据分析与可视化

1. 准备工作

在开始之前,确保你已经安装了所需的 Python 库,并且有一个包含 Bilibili 评论数据的 CSV 文件。我们将使用以下库:

  • pandas:用于数据处理和分析。
  • pyecharts:用于生成图表和大屏展示。

首先安装这些库:

pip install pandas pyecharts

2. 数据准备

假设我们已经获取到 Bilibili 的评论数据,并将其保存为 data2.csv。数据的主要字段包括:

  • Timestamp:评论的时间戳。
  • Cleaned_Comment:清洗后的评论内容,存储为 Python 列表格式。
  • Like Count:评论的点赞数。
  • IP Location:评论者的 IP 地址(用于分析地理分布)。

数据格式如下所示:

TimestampCleaned_CommentLike CountIP Location
2022-01-01 12:00:00[‘word1’, ‘word2’, ‘word3’]5北京市
2022-01-01 12:05:00[‘word4’, ‘word5’, ‘word2’]10上海市

3. 数据处理与分析

3.1 处理评论文本与词频分析

为了从评论中提取出有用的信息,我们将清洗后的评论文本展开,并统计每个词语的出现频率,以便生成词云和柱状图。

import pandas as pd
from collections import Counter

# 读取 CSV 文件
df = pd.read_csv('data2.csv')

# 将 Cleaned_Comment 列转换为 Python 列表
df['Cleaned_Comment'] = df['Cleaned_Comment'].apply(eval)

# 展平所有评论词语
all_words = [word for comment in df['Cleaned_Comment'] for word in comment]

# 统计词频
word_counts = Counter(all_words)

# 转换为词云输入格式
wordcloud_data = [(word, count) for word, count in word_counts.items()]
3.2 时间处理与按时间间隔统计

我们将时间戳转换为 datetime 格式,并按天或按15天的时间间隔统计评论数量和点赞数的变化。

# 转换时间戳为 datetime 格式
df['Timestamp'] = pd.to_datetime(df['Timestamp'])

# 筛选出2022年数据
df_2022 = df[(df['Timestamp'] >= '2022-01-01') & (df['Timestamp'] < '2023-01-01')]

# 按15天的时间间隔统计评论数量
comment_count_by_15days = df_2022.resample('15D', on='Timestamp').size().reset_index(name='Comment Count')
x_data_comment = comment_count_by_15days['Timestamp'].dt.strftime('%Y-%m-%d').tolist()
y_data_comment = comment_count_by_15days['Comment Count'].tolist()

# 按15天的时间间隔统计点赞数量
like_count_by_15days = df_2022.resample('15D', on='Timestamp').sum().reset_index()
x_data_like = like_count_by_15days['Timestamp'].dt.strftime('%Y-%m-%d').tolist()
y_data_like = like_count_by_15days['Like Count'].tolist()
3.3 统计 IP 地理分布

我们还可以统计评论的 IP 地址分布,了解用户的地理位置。

# 统计各省份的 IP 地址数量
province_ip_count = df['IP Location'].value_counts().reset_index()
province_ip_count.columns = ['province', 'ip_count']

4. 使用 pyecharts 创建图表

接下来,我们将使用 pyecharts 库来生成各种类型的图表,包括词云图、柱状图、折线图和地图。

4.1 生成词云图

词云图展示了评论中最常出现的词语,直观地呈现了评论内容的主要话题。

from pyecharts.charts import WordCloud
from pyecharts import options as opts

wordcloud = WordCloud(init_opts=opts.InitOpts(width="800px", height="600px"))
wordcloud.add("", wordcloud_data, word_size_range=[20, 100])
wordcloud.set_global_opts(title_opts=opts.TitleOpts(title="评论词云图"))
wordcloud.render("wordcloud.html")
4.2 生成评论和点赞量变化折线图

折线图可以帮助我们观察评论和点赞数量的时间变化趋势。

from pyecharts.charts import Line

line_comment = (
    Line()
    .add_xaxis(x_data_comment)
    .add_yaxis("2022年评论量每15天变化", y_data_comment)
    .set_global_opts(title_opts=opts.TitleOpts(title="2022年评论量变化"))
)

line_like = (
    Line()
    .add_xaxis(x_data_like)
    .add_yaxis("2022年点赞量每15天变化", y_data_like)
    .set_global_opts(title_opts=opts.TitleOpts(title="2022年点赞量变化"))
)

line_comment.render("comment_change.html")
line_like.render("like_change.html")
4.3 生成地理分布地图

我们使用地图展示 IP 地址的地理分布,了解用户的分布情况。

from pyecharts.charts import Map

map_chart = (
    Map()
    .add("IP 数量", [list(z) for z in zip(province_ip_count['province'], province_ip_count['ip_count'])], "china")
    .set_global_opts(title_opts=opts.TitleOpts(title="IP 地址分布"))
)
map_chart.render("ip_location_map.html")
4.4 创建时间轮播图

时间轮播图可以展示不同年份和月份的评论和点赞数据。通过设置 pyecharts 中的 Timeline,可以制作动态展示的效果。

from pyecharts.charts import Timeline, Bar

timeline = Timeline()

for year in df['Year'].unique():
    df_year = df[df['Year'] == year]
    bar = (
        Bar()
        .add_xaxis(df_year['Month'].astype(str).tolist())
        .add_yaxis("每月评论数", df_year['Comment Count'].tolist())
        .set_global_opts(title_opts=opts.TitleOpts(title=f"{year}年每月评论数"))
    )
    timeline.add(bar, f"{year}年")

timeline.render("timeline.html")

5. 构建大屏展示

最后,我们将这些图表整合到一个交互式的大屏页面中。通过 pyechartsPage 类,可以将多个图表组合到一个页面,生成一个动态大屏。

from pyecharts.components import Table
from pyecharts.charts import Page

# 创建表格
table = Table()
headers = ["基于 Python 的 Bilibili 评论分析大屏"]
rows = []
table.add(headers=headers, rows=rows)

# 创建页面
page = Page(layout=Page.DraggablePageLayout)

page.add(
    table,
    wordcloud,
    line_comment,
    line_like,
    map_chart,
    timeline
)

# 渲染大屏页面
page.render("bilibili_comment_analysis.html")
print("大屏生成完毕:bilibili_comment_analysis.html")

6. 结果展示

执行完上述代码后,你将得到一个包含以下内容的交互式大屏:

  • 评论词云图:展示评论中最常见的词汇。
  • 时间折线图:展示评论和点赞数的时间变化。
  • 地理分布图:展示评论者的地理位置分布。
  • 时间轮播图:展示不同年份和月份的评论和点赞数据。

在这里插入图片描述

五、总结

本项目展示了如何利用 Python 从 Bilibili 获取评论数据,经过清洗和处理后,通过多种图表形式展示数据分析结果。通过对评论内容和点赞数的分析,我们可以揭示视频的互动情况,了解用户的情感倾向与话题趋势。数据可视化部分使得这些分析结果更加直观、易懂。

对于未来的改进,我们可以进一步优化爬虫性能,增加对评论的情感分析,或者将数据存储到数据库中进行更加复杂的查询与分析。

六、参考资料

希望通过这篇博客,大家能对如何通过 Python 进行 Bilibili 评论数据分析和可视化有一个清晰的了解,也希望能启发大家在实际项目中应用这些技术。

### 实现 Bilibili 弹幕情感分析的技术方案 #### 数据采集处理 为了获取B站的弹幕数据,可以利用API接口或者爬虫技术来抓取实时或历史弹幕。由于弹幕数量庞大,采用PySpark作为工具能够有效提高数据处理效率。PySpark提供了强大的分布式计算框架,适用于大规模数据集的操作。 ```python from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("DanmakuAnalysis") \ .getOrCreate() # 假设已经有一个包含弹幕文本的数据框 df_danmakus df_danmakus = spark.read.json("path_to_bilibili_danmaku_data") ``` #### 情感分析 对于每一条弹幕消息,需要对其进行预处理(如去除停用词、分词),之后再输入到训练好的情感分类器中得到其对应的情感标签以及情绪评分。这里可以选择使用现有的中文情感分析库或是自定义机器学习/深度学习模型来进行预测。 ```python import jieba from snownlp import SnowNLP # 中文自然语言处理库之一 def analyze_sentiment(text): s = SnowNLP(text) sentiment_score = s.sentiments # 返回0-1之间的小数表示正面程度 return "positive" if sentiment_score >= 0.5 else "negative" danmaku_text = "这视频太好笑了!" print(analyze_sentiment(danmaku_text)) # 输出 positive 或 negative ``` #### 结果展示 最后一步是构建一个交互式的前端界面让用户查看分析后的结果。Flask是一个轻量级Python Web框架,非常适合用来快速搭建这样的应用程序。可以在网页上绘制图表显示不同时间段内各类别情感的比例变化情况等信息。 ```python from flask import Flask, render_template_string app = Flask(__name__) @app.route('/') def index(): template = ''' <!DOCTYPE html> <html lang="en"> ... <!-- 这里放置用于呈现图形化结果的HTML/CSS/JavaScript代码 --> ... </html> ''' return render_template_string(template) if __name__ == '__main__': app.run(debug=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值