论文阅读-《Speed/accuracy trade-offs for modern convolutional object detectors》

本文对比了Faster R-CNN、R-FCN和SSD三类目标检测器在速度与准确性之间的权衡。研究发现,减少Faster R-CNN的提案数量可显著提高速度,对精度影响不大;而SSD的性能受特征提取器影响较小。实验还涉及了特征提取器的选择、提案数量、输出步长设置等多个方面,提供了详尽的基准测试结果。
摘要由CSDN通过智能技术生成

Google Research
开源code/model地址:https://github.com/tensorflow/models/tree/master/object_detection

0.abstract

本文主要对主流的三类object detector进行了speed-accuracy trade-off上的比较。
作者考虑三类”meta-architectures”:faster rcnn 、r-fcn以及ssd
faster rcnn和r-fcn是region-based detector,不同的是,faste rcnn里面box classifier用的是强分类器,而r-fcn里面的box classifier相对可以看成弱分类器的组合。
ssd(这里包括了yolo等)是region-free detector

作者主要探讨了不同的feature extractor、image resolution、以及对于faster rcnn和r-fcn来说,number of proposals对检测器性能(精度、速度、内存使用)的影响

1.Motivation & contribution

目前主流的目标检测框架缺乏相互之间各方面的对比,因此作者在tensorflow上将各个主流的检测算法都实现了一遍,用来对比不同检测算法,当然这里对比的都是各个算法的single model,也就是说不使用ensemble。

作者主要的两点发现是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值