Red Black Trees | CS 61B Data Structures, Spring 2019

Red Black Trees | CS 61B Data Structures, Spring 2019

reading:11.4, 11.5, Algs 424-431, 432-448 (extra)

Why we need Red black Trees

Wonderfully balanced as they are, B-Trees are really difficult to implement. We need to keep track of the different nodes and the splitting process is pretty complicated. In other word 2-3 trees (and 2-3-4 trees) are a real pain to implement, and suffer from performance problems. Issues include:

  • Maintaining different node types.(对于2-3-4 tree,一个树中的节点可能包含一个,两个,或者三个item。)
  • Interconversion of nodes between 2-nodes and 3-nodes.
  • Walking up the tree to split nodes.(若一个节点中的item数超过了限制,必须将多余的item转移到其父节点)

“Beautiful algorithms are(B-tree), unfortunately, not always the most useful.” - Knuth
2-3-4 trees/2-3 trees 是B-tree 中的两个具体实例

BST Structure and Tree Rotation

Given any BST, it is possible to move to a different configuration using “rotation”.
In general, can move from any configuration to any other in 2n - 6 rotations(n 是书中节点的数量)

The formal defination of Tree Rotation

  1. rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

在这里插入图片描述

G’s right child, P, merges with G, bringing its children along. P then passes its left child to G and G goes down to the left to become P’s left child.

  1. rotateRight§: Let x be the left child of P. Make P the new right child of x.
    在这里插入图片描述

Can think of as temporarily merging G and P, then sending P down and right. Note: k was G’s right child. Now it is P’s left child.

We can also rotate on a non-root node. We just disconnect the node from the parent temporarily, rotate the subtree at the node, then reconnect the new root.

在这里插入图片描述

private	Node rotateRight(Node h){
//assert(h!=null)&&isRed(h.left);				
Node x=h.left;				
h.left=x.right;				
x.right	=h;				
return x; 
}
//	make a right-leaning link lean to the left 
private Node rotateLeft(Node	h)	{				
//assert(h!=null)&&isRed(h.right);				
Node x=h.right;				
h.right	=x.left;
x.left =h;
return	x; }

Red-Black Trees

Search Trees

There are many types of search trees:

  • Binary search trees: Can balance using rotation, but we have no algorithm for doing so (yet).(所以必须至少n-6次的旋转才能由一个任意形状的树得到Binary search trees)
  • 2-3 trees: Balanced by construction, i.e. no rotations required.
Let’s try something clever, but strange.

Our goal: Build a BST that is structurally identical to a 2-3 tree.
Since 2-3 trees are balanced, so will our special BSTs.

1.A 2-3 tree with only 2-nodes(每个node仅有两个孩子,根据B-树的性质,因为树中的每个节点(除叶节点)有两个孩子,所以每个节点中仅有一个item) is trivial.

  • BST is exactly the same!
  • 在这里插入图片描述
    2.1.A 2-3 tree with only 2-nodes
    在这里插入图片描述

Left-Leaning Red Black Binary Search Tree (LLRB)

A BST with left glue links that represents a 2-3 tree is often called a “Left Leaning Red Black Binary Search Tree” or LLRB.

  • LLRBs are normal BSTs!
  • There is a 1-1 correspondence between an LLRB and an equivalent 2-3 tree.
  • The red is just a convenient fiction. Red links don’t “do” anything special.
    在这里插入图片描述

>depth: the number of links between a node and the root.
height: the lowest depth of a tree.

Properties of LLRB’s

Here are the properties of LLRB’s:

  1. 1-1 correspondence with 2-3 trees.
  2. No node has 2 red links. (一个node不能同时连接两个red-link,见图例一 左一)There are no red right-links.
  3. Every path from root to leaf has same number of black links (because 2-3 trees have same number of links to every leaf/换句话说2-3树的所有叶子有相同的depth). (图例一左二,三)
  4. Height is no more than 2x height of corresponding 2-3 tree.(假设2-3树的高度为H,则LLRB’s 的最大高度为2H+1)
    在这里插入图片描述
    例一

LLRB Construction

We can always insert into a LLRB tree by inserting into a 2-3 tree and converting it using the scheme from above. However, this would be contrary to our original purpose of creating a LLRB, which was to avoid the complicate code of a 2-3 tree! Instead, we insert into the LLRB as we would with a normal BST. However, this could break its 1-1 mapping to a 2-3 tree, so we will use rotations to massage the tree back into a proper structure.

我们必须避免直接构建2-3树,因为这个过程及其困难。我们应该直接构建红黑树,并利用各种操作将其变得最终于2-3树一一对应。

  1. Design Task #1: Insertion Color
    because in a 2-3 tree, we are always inserting by adding to a leaf node, the color of the link we add should always be red.

在这里插入图片描述
2. Task 2: insertion on the right: recall, we are using left-leaning red black trees, which means we can never have a right red link. If we insert on the right, we will need to use a rotation in order to maintain the LLRB invariant.

在这里插入图片描述
However, if we were to insert on the right with a red link and the left child is also a red link, then we will temporarily allow it for purposes that will become clearer in task 4.
在这里插入图片描述
3. Task 3: double insertion on the left: If there are 2 left red links, then we have a 4node which is illegal. First, we will rotate to create the same tree seen in task 2 above.
在这里插入图片描述
Then, in both situations, we will flip the colors of all edges touching S. This is equivalent to pushing up the middle node in a 2-3 tree

4,Task 4.Splitting Temporary 4-Nodes
在这里插入图片描述

summary of all the operations:

  • When inserting: Use a red link.
  • If there is a right leaning “3-node”, we have a Left Leaning Violation.
    • Rotate left the appropriate node to fix

.right leaning 意思是树中有某个节点有一个连接右孩子的link是红色的,“3-node代表在2-3树中对应节点有三个孩子

  • If there are two consecutive(连续的) left links, we have an Incorrect 4 Node Violation.(在对应的2-3树中,该节点内用三个item,根据2-3树的性质,该2-3树中的节点应该有四个孩子,但2-3树规定最多每个节点可以有2个item,对应三个子节点)
    • Rotate right the appropriate node to fix.
  • If there are any nodes with two red children, we have a Temporary 4 Node.
    • Color flip the node to emulate the split operation.
  • It is possible that a rotation or flip operation will cause an additional violation that needs fixing.

Cascading Balance Example:

在这里插入图片描述
在这里插入图片描述

LLRB Runtime and Implementation

The runtime analysis for LLRBs is simple if you trust the 2-3 tree runtime.

  • LLRB tree has height O(log N).
  • Contains is trivially O(log N).
  • Insert is O(log N).
    • O(log N) to add the new node.
    • O(log N) rotation and color flip operations per insert.

We will not discuss LLRB delete.
Not too terrible really, but it’s just not interesting enough to cover. See optional textbook if you’re curious (though they gloss over it, too).

LLRB Implementation

private Node put(Node h,Key key,Value val) {
	if(h==null)       {return new Node(key, val, RED); }
  	int cmp=key.compareTo(h.key);
    if (cmp < 0)      { h.left=put(h.left,key,val);}
    else if(cmp>0)    { h.right=put(h.right,key,val);}
    else              {h.val=val;  }
 
	if(isRed(h.right)&&!isRed(h.left))      { h = rotateLeft(h);  }
	if (isRed(h.left)&& isRed(h.left.left)) { h = rotateRight(h); }
	if (isRed(h.left)&&isRed(h.right))     { flipColors(h);      } 
 
	return h;
}

The whole story of red-black-tree

/******************************************************************************
 *  Compilation:  javac RedBlackBST.java
 *  Execution:    java RedBlackBST < input.txt
 *  Dependencies: StdIn.java StdOut.java  
 *  Data files:   https://algs4.cs.princeton.edu/33balanced/tinyST.txt  
 *    
 *  A symbol table implemented using a left-leaning red-black BST.
 *  This is the 2-3 version.
 *
 *  Note: commented out assertions because DrJava now enables assertions
 *        by default.
 *
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *  
 *  % java RedBlackBST < tinyST.txt
 *  A 8
 *  C 4
 *  E 12
 *  H 5
 *  L 11
 *  M 9
 *  P 10
 *  R 3
 *  S 0
 *  X 7
 *
 ******************************************************************************/

import java.util.NoSuchElementException;

/**
 *  The {@code BST} class represents an ordered symbol table of generic
 *  key-value pairs.
 *  It supports the usual <em>put</em>, <em>get</em>, <em>contains</em>,
 *  <em>delete</em>, <em>size</em>, and <em>is-empty</em> methods.
 *  It also provides ordered methods for finding the <em>minimum</em>,
 *  <em>maximum</em>, <em>floor</em>, and <em>ceiling</em>.
 *  It also provides a <em>keys</em> method for iterating over all of the keys.
 *  A symbol table implements the <em>associative array</em> abstraction:
 *  when associating a value with a key that is already in the symbol table,
 *  the convention is to replace the old value with the new value.
 *  Unlike {@link java.util.Map}, this class uses the convention that
 *  values cannot be {@code null}—setting the
 *  value associated with a key to {@code null} is equivalent to deleting the key
 *  from the symbol table.
 *  <p>
 *  It requires that
 *  the key type implements the {@code Comparable} interface and calls the
 *  {@code compareTo()} and method to compare two keys. It does not call either
 *  {@code equals()} or {@code hashCode()}.
 *  <p>
 *  This implementation uses a <em>left-leaning red-black BST</em>. 
 *  The <em>put</em>, <em>get</em>, <em>contains</em>, <em>remove</em>,
 *  <em>minimum</em>, <em>maximum</em>, <em>ceiling</em>, <em>floor</em>,
 *  <em>rank</em>, and <em>select</em> operations each take
 *  &Theta;(log <em>n</em>) time in the worst case, where <em>n</em> is the
 *  number of key-value pairs in the symbol table.
 *  The <em>size</em>, and <em>is-empty</em> operations take &Theta;(1) time.
 *  The <em>keys</em> methods take
 *  <em>O</em>(log <em>n</em> + <em>m</em>) time, where <em>m</em> is
 *  the number of keys returned by the iterator.
 *  Construction takes &Theta;(1) time.
 *  <p>
 *  For alternative implementations of the symbol table API, see {@link ST},
 *  {@link BinarySearchST}, {@link SequentialSearchST}, {@link BST},
 *  {@link SeparateChainingHashST}, {@link LinearProbingHashST}, and
 *  {@link AVLTreeST}.
 *  For additional documentation, see
 *  <a href="https://algs4.cs.princeton.edu/33balanced">Section 3.3</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */

public class RedBlackBST<Key extends Comparable<Key>, Value> {

    private static final boolean RED   = true;
    private static final boolean BLACK = false;

    private Node root;     // root of the BST

    // BST helper node data type
    private class Node {
        private Key key;           // key
        private Value val;         // associated data
        private Node left, right;  // links to left and right subtrees
        private boolean color;     // color of parent link
        private int size;          // subtree count

        public Node(Key key, Value val, boolean color, int size) {
            this.key = key;
            this.val = val;
            this.color = color;
            this.size = size;
        }
    }

    /**
     * Initializes an empty symbol table.
     */
    public RedBlackBST() {
    }

   /***************************************************************************
    *  Node helper methods.
    ***************************************************************************/
    // is node x red; false if x is null ?
    private boolean isRed(Node x) {
        if (x == null) return false;
        return x.color == RED;
    }

    // number of node in subtree rooted at x; 0 if x is null
    private int size(Node x) {
        if (x == null) return 0;
        return x.size;
    } 


    /**
     * Returns the number of key-value pairs in this symbol table.
     * @return the number of key-value pairs in this symbol table
     */
    public int size() {
        return size(root);
    }

   /**
     * Is this symbol table empty?
     * @return {@code true} if this symbol table is empty and {@code false} otherwise
     */
    public boolean isEmpty() {
        return root == null;
    }


   /***************************************************************************
    *  Standard BST search.
    ***************************************************************************/

    /**
     * Returns the value associated with the given key.
     * @param key the key
     * @return the value associated with the given key if the key is in the symbol table
     *     and {@code null} if the key is not in the symbol table
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        return get(root, key);
    }

    // value associated with the given key in subtree rooted at x; null if no such key
    private Value get(Node x, Key key) {
        while (x != null) {
            int cmp = key.compareTo(x.key);
            if      (cmp < 0) x = x.left;
            else if (cmp > 0) x = x.right;
            else              return x.val;
        }
        return null;
    }

    /**
     * Does this symbol table contain the given key?
     * @param key the key
     * @return {@code true} if this symbol table contains {@code key} and
     *     {@code false} otherwise
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public boolean contains(Key key) {
        return get(key) != null;
    }

   /***************************************************************************
    *  Red-black tree insertion.
    ***************************************************************************/

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting the old 
     * value with the new value if the symbol table already contains the specified key.
     * Deletes the specified key (and its associated value) from this symbol table
     * if the specified value is {@code null}.
     *
     * @param key the key
     * @param val the value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");
        if (val == null) {
            delete(key);
            return;
        }

        root = put(root, key, val);
        root.color = BLACK;
        // assert check();
    }

    // insert the key-value pair in the subtree rooted at h
    private Node put(Node h, Key key, Value val) { 
        if (h == null) return new Node(key, val, RED, 1);

        int cmp = key.compareTo(h.key);
        if      (cmp < 0) h.left  = put(h.left,  key, val); 
        else if (cmp > 0) h.right = put(h.right, key, val); 
        else              h.val   = val;

        // fix-up any right-leaning links
        if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h);
        if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);
        if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);
        h.size = size(h.left) + size(h.right) + 1;

        return h;
    }

   /***************************************************************************
    *  Red-black tree deletion.
    ***************************************************************************/

    /**
     * Removes the smallest key and associated value from the symbol table.
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException("BST underflow");

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = deleteMin(root);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the minimum key rooted at h
    private Node deleteMin(Node h) { 
        if (h.left == null)
            return null;

        if (!isRed(h.left) && !isRed(h.left.left))
            h = moveRedLeft(h);

        h.left = deleteMin(h.left);
        return balance(h);
    }


    /**
     * Removes the largest key and associated value from the symbol table.
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException("BST underflow");

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = deleteMax(root);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the maximum key rooted at h
    private Node deleteMax(Node h) { 
        if (isRed(h.left))
            h = rotateRight(h);

        if (h.right == null)
            return null;

        if (!isRed(h.right) && !isRed(h.right.left))
            h = moveRedRight(h);

        h.right = deleteMax(h.right);

        return balance(h);
    }

    /**
     * Removes the specified key and its associated value from this symbol table     
     * (if the key is in this symbol table).    
     *
     * @param  key the key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void delete(Key key) { 
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");
        if (!contains(key)) return;

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = delete(root, key);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the given key rooted at h
    private Node delete(Node h, Key key) { 
        // assert get(h, key) != null;

        if (key.compareTo(h.key) < 0)  {
            if (!isRed(h.left) && !isRed(h.left.left))
                h = moveRedLeft(h);
            h.left = delete(h.left, key);
        }
        else {
            if (isRed(h.left))
                h = rotateRight(h);
            if (key.compareTo(h.key) == 0 && (h.right == null))
                return null;
            if (!isRed(h.right) && !isRed(h.right.left))
                h = moveRedRight(h);
            if (key.compareTo(h.key) == 0) {
                Node x = min(h.right);
                h.key = x.key;
                h.val = x.val;
                // h.val = get(h.right, min(h.right).key);
                // h.key = min(h.right).key;
                h.right = deleteMin(h.right);
            }
            else h.right = delete(h.right, key);
        }
        return balance(h);
    }

   /***************************************************************************
    *  Red-black tree helper functions.
    ***************************************************************************/

    // make a left-leaning link lean to the right
    private Node rotateRight(Node h) {
        // assert (h != null) && isRed(h.left);
        Node x = h.left;
        h.left = x.right;
        x.right = h;
        x.color = x.right.color;
        x.right.color = RED;
        x.size = h.size;
        h.size = size(h.left) + size(h.right) + 1;
        return x;
    }

    // make a right-leaning link lean to the left
    private Node rotateLeft(Node h) {
        // assert (h != null) && isRed(h.right);
        Node x = h.right;
        h.right = x.left;
        x.left = h;
        x.color = x.left.color;
        x.left.color = RED;
        x.size = h.size;
        h.size = size(h.left) + size(h.right) + 1;
        return x;
    }

    // flip the colors of a node and its two children
    private void flipColors(Node h) {
        // h must have opposite color of its two children
        // assert (h != null) && (h.left != null) && (h.right != null);
        // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))
        //    || (isRed(h)  && !isRed(h.left) && !isRed(h.right));
        h.color = !h.color;
        h.left.color = !h.left.color;
        h.right.color = !h.right.color;
    }

    // Assuming that h is red and both h.left and h.left.left
    // are black, make h.left or one of its children red.
    private Node moveRedLeft(Node h) {
        // assert (h != null);
        // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);

        flipColors(h);
        if (isRed(h.right.left)) { 
            h.right = rotateRight(h.right);
            h = rotateLeft(h);
            flipColors(h);
        }
        return h;
    }

    // Assuming that h is red and both h.right and h.right.left
    // are black, make h.right or one of its children red.
    private Node moveRedRight(Node h) {
        // assert (h != null);
        // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
        flipColors(h);
        if (isRed(h.left.left)) { 
            h = rotateRight(h);
            flipColors(h);
        }
        return h;
    }

    // restore red-black tree invariant
    private Node balance(Node h) {
        // assert (h != null);

        if (isRed(h.right))                      h = rotateLeft(h);
        if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
        if (isRed(h.left) && isRed(h.right))     flipColors(h);

        h.size = size(h.left) + size(h.right) + 1;
        return h;
    }


   /***************************************************************************
    *  Utility functions.
    ***************************************************************************/

    /**
     * Returns the height of the BST (for debugging).
     * @return the height of the BST (a 1-node tree has height 0)
     */
    public int height() {
        return height(root);
    }
    private int height(Node x) {
        if (x == null) return -1;
        return 1 + Math.max(height(x.left), height(x.right));
    }

   /***************************************************************************
    *  Ordered symbol table methods.
    ***************************************************************************/

    /**
     * Returns the smallest key in the symbol table.
     * @return the smallest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
        return min(root).key;
    } 

    // the smallest key in subtree rooted at x; null if no such key
    private Node min(Node x) { 
        // assert x != null;
        if (x.left == null) return x; 
        else                return min(x.left); 
    } 

    /**
     * Returns the largest key in the symbol table.
     * @return the largest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
        return max(root).key;
    } 

    // the largest key in the subtree rooted at x; null if no such key
    private Node max(Node x) { 
        // assert x != null;
        if (x.right == null) return x; 
        else                 return max(x.right); 
    } 


    /**
     * Returns the largest key in the symbol table less than or equal to {@code key}.
     * @param key the key
     * @return the largest key in the symbol table less than or equal to {@code key}
     * @throws NoSuchElementException if there is no such key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key floor(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to floor() is null");
        if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
        Node x = floor(root, key);
        if (x == null) throw new NoSuchElementException("argument to floor() is too small");
        else           return x.key;
    }    

    // the largest key in the subtree rooted at x less than or equal to the given key
    private Node floor(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0)  return floor(x.left, key);
        Node t = floor(x.right, key);
        if (t != null) return t; 
        else           return x;
    }

    /**
     * Returns the smallest key in the symbol table greater than or equal to {@code key}.
     * @param key the key
     * @return the smallest key in the symbol table greater than or equal to {@code key}
     * @throws NoSuchElementException if there is no such key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key ceiling(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
        if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
        Node x = ceiling(root, key);
        if (x == null) throw new NoSuchElementException("argument to ceiling() is too small");
        else           return x.key;  
    }

    // the smallest key in the subtree rooted at x greater than or equal to the given key
    private Node ceiling(Node x, Key key) {  
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp > 0)  return ceiling(x.right, key);
        Node t = ceiling(x.left, key);
        if (t != null) return t; 
        else           return x;
    }

    /**
     * Return the key in the symbol table of a given {@code rank}.
     * This key has the property that there are {@code rank} keys in
     * the symbol table that are smaller. In other words, this key is the
     * ({@code rank}+1)st smallest key in the symbol table.
     *
     * @param  rank the order statistic
     * @return the key in the symbol table of given {@code rank}
     * @throws IllegalArgumentException unless {@code rank} is between 0 and
     *        <em>n</em>–1
     */
    public Key select(int rank) {
        if (rank < 0 || rank >= size()) {
            throw new IllegalArgumentException("argument to select() is invalid: " + rank);
        }
        return select(root, rank);
    }

    // Return key in BST rooted at x of given rank.
    // Precondition: rank is in legal range.
    private Key select(Node x, int rank) {
        if (x == null) return null;
        int leftSize = size(x.left);
        if      (leftSize > rank) return select(x.left,  rank);
        else if (leftSize < rank) return select(x.right, rank - leftSize - 1); 
        else                      return x.key;
    }

    /**
     * Return the number of keys in the symbol table strictly less than {@code key}.
     * @param key the key
     * @return the number of keys in the symbol table strictly less than {@code key}
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public int rank(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to rank() is null");
        return rank(key, root);
    } 

    // number of keys less than key in the subtree rooted at x
    private int rank(Key key, Node x) {
        if (x == null) return 0; 
        int cmp = key.compareTo(x.key); 
        if      (cmp < 0) return rank(key, x.left); 
        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); 
        else              return size(x.left); 
    } 

   /***************************************************************************
    *  Range count and range search.
    ***************************************************************************/

    /**
     * Returns all keys in the symbol table as an {@code Iterable}.
     * To iterate over all of the keys in the symbol table named {@code st},
     * use the foreach notation: {@code for (Key key : st.keys())}.
     * @return all keys in the symbol table as an {@code Iterable}
     */
    public Iterable<Key> keys() {
        if (isEmpty()) return new Queue<Key>();
        return keys(min(), max());
    }

    /**
     * Returns all keys in the symbol table in the given range,
     * as an {@code Iterable}.
     *
     * @param  lo minimum endpoint
     * @param  hi maximum endpoint
     * @return all keys in the symbol table between {@code lo} 
     *    (inclusive) and {@code hi} (inclusive) as an {@code Iterable}
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *    is {@code null}
     */
    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");

        Queue<Key> queue = new Queue<Key>();
        // if (isEmpty() || lo.compareTo(hi) > 0) return queue;
        keys(root, queue, lo, hi);
        return queue;
    } 

    // add the keys between lo and hi in the subtree rooted at x
    // to the queue
    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) { 
        if (x == null) return; 
        int cmplo = lo.compareTo(x.key); 
        int cmphi = hi.compareTo(x.key); 
        if (cmplo < 0) keys(x.left, queue, lo, hi); 
        if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key); 
        if (cmphi > 0) keys(x.right, queue, lo, hi); 
    } 

    /**
     * Returns the number of keys in the symbol table in the given range.
     *
     * @param  lo minimum endpoint
     * @param  hi maximum endpoint
     * @return the number of keys in the symbol table between {@code lo} 
     *    (inclusive) and {@code hi} (inclusive)
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *    is {@code null}
     */
    public int size(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to size() is null");

        if (lo.compareTo(hi) > 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else              return rank(hi) - rank(lo);
    }


   /***************************************************************************
    *  Check integrity of red-black tree data structure.
    ***************************************************************************/
    private boolean check() {
        if (!isBST())            StdOut.println("Not in symmetric order");
        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent()) StdOut.println("Ranks not consistent");
        if (!is23())             StdOut.println("Not a 2-3 tree");
        if (!isBalanced())       StdOut.println("Not balanced");
        return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
    }

    // does this binary tree satisfy symmetric order?
    // Note: this test also ensures that data structure is a binary tree since order is strict
    private boolean isBST() {
        return isBST(root, null, null);
    }

    // is the tree rooted at x a BST with all keys strictly between min and max
    // (if min or max is null, treat as empty constraint)
    // Credit: Bob Dondero's elegant solution
    private boolean isBST(Node x, Key min, Key max) {
        if (x == null) return true;
        if (min != null && x.key.compareTo(min) <= 0) return false;
        if (max != null && x.key.compareTo(max) >= 0) return false;
        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
    } 

    // are the size fields correct?
    private boolean isSizeConsistent() { return isSizeConsistent(root); }
    private boolean isSizeConsistent(Node x) {
        if (x == null) return true;
        if (x.size != size(x.left) + size(x.right) + 1) return false;
        return isSizeConsistent(x.left) && isSizeConsistent(x.right);
    } 

    // check that ranks are consistent
    private boolean isRankConsistent() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i))) return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0) return false;
        return true;
    }

    // Does the tree have no red right links, and at most one (left)
    // red links in a row on any path?
    private boolean is23() { return is23(root); }
    private boolean is23(Node x) {
        if (x == null) return true;
        if (isRed(x.right)) return false;
        if (x != root && isRed(x) && isRed(x.left))
            return false;
        return is23(x.left) && is23(x.right);
    } 

    // do all paths from root to leaf have same number of black edges?
    private boolean isBalanced() { 
        int black = 0;     // number of black links on path from root to min
        Node x = root;
        while (x != null) {
            if (!isRed(x)) black++;
            x = x.left;
        }
        return isBalanced(root, black);
    }

    // does every path from the root to a leaf have the given number of black links?
    private boolean isBalanced(Node x, int black) {
        if (x == null) return black == 0;
        if (!isRed(x)) black--;
        return isBalanced(x.left, black) && isBalanced(x.right, black);
    } 


    /**
     * Unit tests the {@code RedBlackBST} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) { 
        RedBlackBST<String, Integer> st = new RedBlackBST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }
        StdOut.println();
        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
        StdOut.println();
    }
}

Search Tree Summary

  • Binary search trees are simple, but they are subject to imbalance.
  • 2-3 Trees (B Trees) are balanced, but painful to implement and relatively slow.
  • LLRBs insertion is simple to implement (but delete is hard).
    • Works by maintaining mathematical bijection with a 2-3 trees.
  • Java’s TreeMap is a red-black tree (not left leaning).
    • Maintains correspondence with 2-3-4 tree (is not a 1-1 correspondence).
    • Allows glue links on either side (see Red-Black Tree).
      More complex implementation, but significantly (?) faster.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值