复合函数求导的链式法则

本文介绍了复合函数的定义,特别是多重复合函数的概念,强调了链式法则在求导中的应用。通过一个具体的例子展示了如何利用链式法则求解函数 (x^2 + 1)^3 的导数,帮助读者深入理解这一数学工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

若有两个一元函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) ,我们可以把 g g g 的函数值作为 f f f 的自变量,得到一个新的函数称为 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的复合函数,记为 f [ g ( x ) ] f[g(x)] f[g(x)]

如果我们已知上述两个函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的导函数 f ′ ( x ) f^{\prime}(x) f(x) g ′ ( x ) g^{\prime}(x) g(x) ,那么我们可以通过以下公式求复合函数 f [ g ( x ) ] f[g(x)] f[g(x)] 的导数。 f [ g ( x ) ] ′ = f ′ [ g ( x ) ] g ′ ( x ) f[g(x)]^{\prime}=f^{\prime}[g(x)] g^{\prime}(x) f[g(x)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

data大柳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值