定义
若有两个一元函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) ,我们可以把 g g g 的函数值作为 f f f 的自变量,得到一个新的函数称为 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 的复合函数,记为 f [ g ( x ) ] f[g(x)] f[g(x)]。
如果我们已知上述两个函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 的导函数 f ′ ( x ) f^{\prime}(x) f′(x) 和 g ′ ( x ) g^{\prime}(x) g′(x) ,那么我们可以通过以下公式求复合函数 f [ g ( x ) ] f[g(x)] f[g(x)] 的导数。 f [ g ( x ) ] ′ = f ′ [ g ( x ) ] g ′ ( x ) f[g(x)]^{\prime}=f^{\prime}[g(x)] g^{\prime}(x) f[g(x)]