数学分析(十七)-多元函数微分学2-复合函数微分法1:复合函数的求导法则【链式法则】【使用复合函数求导公式时,外函数必须“可微”】

本文深入探讨了多元函数微分学中的复合函数可微性,介绍了定理17.5,即复合函数的偏导数和全微分。通过链式法则展示了如何求解复合函数的偏导数,并通过多个例题详细解释了该法则的应用,强调了外函数必须可微的重要条件。此外,还提供了如何在极坐标变换下处理复合函数的导数问题。
摘要由CSDN通过智能技术生成

本节讨论复合函数的可微性、偏导数与全微分.


设函数

x = φ ( s , t )  与  y = ψ ( s , t ) ( 1 ) x=\varphi(s, t) \quad \text { 与 } \quad y=\psi(s, t) \quad\quad(1) x=φ(s,t)  y=ψ(s,t)(1)

定义在 s t s t st 平面的区域 D D D 上,函数

z = f ( x , y ) ( 2 ) z=f(x, y) \quad\quad(2) z=f(x,y)(2)

定义在 x y x y xy 平面的区域 D 1 D_{1} D1 上,且

{ ( x , y ) ∣ x = φ ( s , t ) , y = ψ ( s , t ) , ( s , t ) ∈ D } ⊂ D 1 , \{(x, y) \mid x=\varphi(s, t), y=\psi(s, t),(s, t) \in D\} \subset D_{1}, {(x,y)x=φ(s,t),y=ψ(s,t),(s,t)D}D1,

则函数

z = F ( s , t ) = f ( φ ( s , t ) , ψ ( s , t ) ) , ( s , t ) ∈ D ( 3 ) z=F(s, t)=f(\varphi(s, t), \psi(s, t)), \quad(s, t) \in D \quad\quad(3) z=F(s,t)=f(φ(s,t),ψ(s,t)),(s,t)D(3)

是以 (2) 为外函数、(1) 为内函数复合函数. 其中 x , y x, y x,y 称为函数 F F F中间变量, s , t s, t s,t F F F自变量.

定理 17.5

若函数 x = φ ( s , t ) , y = ψ ( s , t ) x=\varphi(s, t), y=\psi(s, t) x=φ(s,t),y=ψ(s,t) 在点 ( s , t ) ∈ D (s, t) \in D (s,t)D可微, z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x , y ) (x, y) (x,y) = ( φ ( s , t ) , ψ ( s , t ) ) =(\varphi(s, t), \psi(s, t)) =(φ(s,t),ψ(s,t)) 可微, 则复合函数

z = f ( φ ( s , t ) , ψ ( s , t ) ) z=f(\varphi(s, t), \psi(s, t)) z=f(φ(s,t),ψ(s,t))

在点 ( s , t ) (s, t) (s,t) 可微, 且它关于 s s s t t t 的偏导数分别为

∂ z ∂ s ∣ ( s , t ) = ∂ z ∂ x ∣ ( x , y ) ∂ x ∂ s ∣ ( s , t ) + ∂ z ∂ y ∣ ( x , y ) ∂ y ∂ s ∣ ( s , t ) ( 4 ) ∂ z ∂ t ∣ ( s , t ) = ∂ z ∂ x ∣ ( x , y ) ∂ x ∂ t ∣ ( s , t ) + ∂ z ∂ y ∣ ( x , y ) ∂ y ∂ t ∣ ( s , t ) \begin{array}{l} \left.\cfrac{\partial z}{\partial s}\right|_{(s, t)}=\left.\left.\cfrac{\partial z}{\partial x}\right|_{(x, y)} \cfrac{\partial x}{\partial s}\right|_{(s, t)}+\left.\left.\cfrac{\partial z}{\partial y}\right|_{(x, y)} \cfrac{\partial y}{\partial s}\right|_{(s, t)} \\ &\quad\quad(4) \\ \left.\cfrac{\partial z}{\partial t}\right|_{(s, t)}=\left.\left.\cfrac{\partial z}{\partial x}\right|_{(x, y)} \cfrac{\partial x}{\partial t}\right|_{(s, t)}+\left.\left.\cfrac{\partial z}{\partial y}\right|_{(x, y)} \cfrac{\partial y}{\partial t}\right|_{(s, t)} \end{array} sz (s,t)=xz (x,y)sx (s,t)+yz (x,y)sy (s,t)tz (s,t)=xz (x,y)tx (s,t)+yz (x,y)ty (s,t)(4)


由假设 x = φ ( s , t ) , y = ψ ( s , t ) x=\varphi(s, t), y=\psi(s, t) x=φ(s,t),y=ψ(s,t) 在点 ( s , t ) (s, t) (s,t) 可微,于是

Δ x = ∂ x ∂ s Δ s + ∂ x ∂ t Δ t + α 1 Δ s + β 1 Δ t , ( 5 ) Δ y = ∂ y ∂ s Δ s + ∂ y ∂ t Δ t + α 2 Δ s + β 2 Δ t , ( 6 ) \begin{array}{l} \Delta x=\cfrac{\partial x}{\partial s} \Delta s+\cfrac{\partial x}{\partial t} \Delta t+\alpha_{1} \Delta s+\beta_{1} \Delta t, \quad\quad(5)\\[2ex] \Delta y=\cfrac{\partial y}{\partial s} \Delta s+\cfrac{\partial y}{\partial t} \Delta t+\alpha_{2} \Delta s+\beta_{2} \Delta t, \quad\quad(6) \end{array} Δx=sxΔs+txΔt+α1Δs+β1Δt,(5)Δy=syΔs+tyΔt+α2Δs+β2Δt,(6)

其中当 Δ s , Δ t \Delta s, \Delta t Δs,Δt 趋于零时, α 1 , α 2 , β 1 , β 2 \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} α1,α2,β1,β2 都趋于零. 又由 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x , y ) (x, y) (x,y) 可微, 所以

Δ z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y + α Δ x + β Δ y , ( 7 ) \Delta z=\cfrac{\partial z}{\partial x} \Delta x+\cfrac{\partial z}{\partial y} \Delta y+\alpha \Delta x+\beta \Delta y, \quad\quad(7) Δz=xzΔx+yzΔy+αΔx+βΔy,(7)

其中当 Δ x , Δ y → 0 \Delta x, \Delta y \rightarrow 0 Δx,Δy0 时, α , β → 0 \alpha, \beta \rightarrow 0 α,β0 (并补充定义当 Δ x = 0 , Δ y = 0 \Delta x=0, \Delta y=0 Δx=0,Δy=0 α = β = 0 \alpha=\beta=0 α=β=0 ), 将 (5) 式、(6)式代人(7)式,得

Δ z = ( ∂ z ∂ x + α ) ( ∂ x ∂ s Δ s + ∂ x ∂ t Δ t + α 1 Δ s + β 1 Δ t ) + ( ∂ z ∂ y + β ) ( ∂ y ∂ s Δ s + ∂ y ∂ t Δ t + α 2 Δ s + β 2 Δ t ) . \Delta z=\left(\cfrac{\partial z}{\partial x}+\alpha\right)\left(\cfrac{\partial x}{\partial s} \Delta s+\cfrac{\partial x}{\partial t} \Delta t+\alpha_{1} \Delta s+\beta_{1} \Delta t\right)+\left(\cfrac{\partial z}{\partial y}+\beta\right)\left(\cfrac{\partial y}{\partial s} \Delta s+\cfrac{\partial y}{\partial t} \Delta t+\alpha_{2} \Delta s+\beta_{2} \Delta t\right) . Δz=(xz+α)(sxΔs+txΔt+α1Δs+β1Δt)+(y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值