带式输送机的主动速度控制(5)

本文介绍了使用ECO方法对带式输送机速度进行主动控制的过程,包括确定期望速度、选择加速度和调节时间。通过公式计算最大驱动力限制,优化仿真模型以确保系统性能,同时考虑到电机过热等因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 带式输送机完成主动速度控制,首先要确定带式输送机调节后的期望速度(前面已经介绍过),其次是选择合适的加速度、调节时间使得带式输送机的速度达到期望速度。这里介绍一种ECO(estimation-computation-optimization)方法,顾名思义就是先估计,再计算,最后优化。这种ECO方法经常被用来确定速度调节的时间,它是首先估计参数的值,然后根据一些已知理论计算调节时间值,最后根据仿真/实际情况再试图找到参数的最佳数值。

输送带的张力最大值往往出现在驱动滚筒的前端,带式输送机为避免输送带出现张紧风险所提供的最大驱动力 由下面公式(1)确定:

输送带与驱动滚筒之间不打滑的最大驱动力 由下面公式(2)确定:

电动机工作过热的最大驱动力 由下面公式(3)确定:

充分考虑这三者情况后,带式输送机的最大瞬态运行的驱动力应该是这三种驱动力的最小值:

带式输送机的运动阻力由主阻力、二次阻力、倾斜阻力和特殊阻力组成,水平带式输送机的主阻力和二次阻力占总阻力的95%以上。因此,可以忽略水平带式输送机的倾斜阻力和特殊阻力,然后将主要阻力和二次阻力之和近似为:

根据牛顿第二运动定律,带式输送机自身所能达到最大加速为:

驱动电机无法进行回馈制动操作时,带式输送机在减速期间的最大加速度由下式可得:

估算-计算部分已经完成,接下来就需要搭建带式输送机的仿真模型,重复以上步骤进行验证计算的结果是否要求,若不满足要求,则进一步优化结果。

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

树下一棵草

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值