机器学习的相关技术

从上图可以大致看书机器学习从整体上可以分为监督学习、半监督学习、迁移学习、无监督学习、强化学习等。
(一)监督学习
定义:根据已有的数据集,知道输入和输出结果之间的关系。根据这种已知的关系,训练得到一个最优的模型。也就是说,在监督学习中训练数据既有特征(feature)又有标签(label),通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。
(二)半监督学习
半监督学习有两个样本集,一个有标记,一个没有标记.分别记作
Lable={(xi,yi)},Unlabled={(xi)}.并且数量上,L<<U.
1. 单独使用有标记样本,我们能够生成有监督分类算法
2. 单独使用无标记样本,我们能够生成无监督聚类算法
3. 两者都使用,我们希望在1中加入无标记样本,增强有监督分类的效果;同样的,我们希望在2中加入有标记样本,增强无监督聚类的效果.
一般而言,半监督学习侧重于在有监督的分类算法中加入无标记样本来实现半监督分类.也就是在1中加入无标记样本,增强分类效果.
(三)迁移学习
(四)无监督学习
是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习
(五)强化学习
本文详细介绍了机器学习的四种主要类型:监督学习、半监督学习、迁移学习和无监督学习。监督学习依赖带标签的训练数据来建立模型;半监督学习结合有标签和无标签数据来提升学习效果;迁移学习利用预训练模型在新任务中进行适应;无监督学习则处理无标签数据,通过聚类等方法发现数据内在结构。强化学习则是通过与环境的交互,学习最优策略以最大化奖励。
https://blog.csdn.net/dakenz/article/details/85954548
8万+

被折叠的 条评论
为什么被折叠?



