import fastai
from fastai import *
from fastai.vision import *
import torch
print(torch.__version__)
print(fastai.__version__)
1.0.0
1.0.45
4.3 fastai
4.3.1 fastai介绍
fastai库
fastai将训练一个准确的神经网络变得十分简单。fastai库是基于他的创始人Jeremy Howard 等人开发的 Deep Learning 课程深度学习的研究,为计算机视觉、文本、表格数据、时间序列、协同过滤等常见深度学习应用提供单一、一致界面的深度学习库,可以做到开箱即用。这意味着,如果你已经学会用fastai创建实用的计算机视觉(CV)模型,那你就可以用同样的方法创建自然语言处理(NLP)模型,或是其他模型。
fastai 是目前把易用性和功能都做到了极致的深度学习框架,正如Jeremy所说的:如果一个深度学习框架需要写个教程给你,那它的易用性还不够好。Jeremy 说这话,不是为了夸自己,因为他甚至做了个 MOOC 出来。他自己评价说目前 fastai 的易用性依然不算成功。但在我看来它的门槛极低,你可以很轻易用几句话写个图片分类模型出来,人人都能立即上手,你甚至不需要知道深度学习的理论。
fast.ai课程
上面说到了课程,这里对fast.ai的课程做一个简单的介绍:
课程是由kaggle赛事老司机,连续两年冠军Jeremy Howard 和 Rachel Tomas 联合创办,旨在让更多人能接受深度学习的课程,而且是完全免费!真的是业界良心,这两年深度学习火了起来,国内有培训机构推出收费课程了,教学水平参差不齐。而Jeremy和Rachel推出的课程,恰恰提现了他们的教育理念:Make deep learning uncool ! (让深度学习变得没那么高大上)
Fast.ai给人的印象一直很“接地气”:
- 研究如何快速、可靠地把最先进的深度学习应用于实际问题。
- 提供Fast.ai库,它不仅是让新手快速构建深度学习实现的工具包,也是提供最佳实践的一个强大而便捷的资源。
- 课程内容简洁易懂,以便尽可能多的人从研究成果和软件中收益。

本文介绍了fastai库,它为深度学习提供了一个简单易用的接口,使得无论是计算机视觉还是自然语言处理都能快速构建模型。文章通过MNIST数据集展示了如何使用fastai进行图像分类,包括数据加载、模型训练和优化方法。同时,提到了fast.ai的免费课程和Github资源。最后,讨论了fastai如何自动处理许多细节,简化了训练过程。
最低0.47元/天 解锁文章
227

被折叠的 条评论
为什么被折叠?



