【深度2】【工业相机】的相机靶面大小和测量精度的关系分析和计算:@opencv

机器视觉 专栏收录该内容
23 篇文章 1 订阅

前言:本文分析工业相机的靶面、镜头和精度的约束和相关关系:所谓工业相机(整机)这里指的是:相机 + 镜头。

我们先把各个参数列个表述。整机参数分别由相机和镜头参数联合决定。本文略过基础知识, 阅读者需具备基本视觉知识

非常透彻的 介绍了几乎所有常用的相机参数计算选择工具 


下表,列举了工业相机的主要参数:

值得注意的是,工业相机最终表现出来的参数,是由相机参数和镜头参数,以及外部条件约束,组合起来的。有些参数,相机机身有,镜头有,有的是联合表述。

 这些参数要搞清楚,才不会混淆,导致计算错误。

内部参数        
参数 相机整机参数举例、单位相机机身参数举例 镜头参数 最终决定说明
像素相机像素1920*1080 (pixel)分辨率百万量级200万(2073600)(pixel)  镜头和传感器低者 
分辨率 (resolution)

 分辨率(ODS)

optical delivery system

 传感器像素点 物方分辨率   
     像方分辨率lp/mm  
     MTF/ Contrast 0.3 的MTF亮度值是底线 
靶面尺寸靶面尺寸
1/3英寸
 传感器感光面积1/3英寸    
外部参数(测量需求)        
WD镜头到相机距离       
测量精度(accuracy)测量的最小物体大小0.02 mm/pixel      
         

准备知识1:相机像素和分辨率 

http://www.360doc.com/content/13/0630/15/3398926_296570170.shtml


准备知识2:图质量和精度的决定因素:

对机器视觉而言,3个决定因素:

  • 相机: 分辨率、传感器类别类别
  • 光学镜头:工作距离,焦距
  •  光照:光照均匀度、 光强、降低杂散光、背景噪音

准备知识3:应用场景:

2D 读码

 

零件测量【距离】

缺陷检测【光照为最关键】

视觉导航

装配

 


一、CCD/CMOS靶面尺寸型号标准:

 

白圈表示光导摄像管成像区域,绿色部分表示CCD/CMOS靶面区域:

典型靶面尺寸类型和定义:

 

【表一】


二,计算方法汇总:

2.1 放大倍数的计算方法

标识输入参数举例
FOV(H)物距视野Hd物距下相机水平视野33cm
(CMOSH)靶面尺寸1/4

查表一:

D = 4   mm 

V = 2.4mm

H = 3.2 mm

 输出参数 
Md物距放大倍数=0.0096

Md = CmosH / FovH = 3.2mm / 330mm = 0.0096

 

 

2.2 视场的计算方法

2.1.1  工业相机实际计算的视野(长边)

相机视场计算图

标识输入参数举例
物距 u镜头到物体距离60cm
靶面尺寸1/4

查表一:

D = 4   mm 

V = 2.4mm

H = 3.2 mm

焦距 f 8mm
 输出参数 
视野 X 240mm

 

 X = (600) * 3.2 / 8mm = 240 mm

公式应用:已知被测物长边330mm,焦距8mm,相机传感器长边3.2mm,需要的镜头到物体距离: 330*8/3.2 = 825mm

 

反求焦距

如果已知物体拍摄尺寸,比如330mm,和距离600mm, 相机靶面大小3.2mm,求焦距:

F = 600*3.2 / 330 = 5.8 mm  

 

2.1.2 镜头视野;

 

 

 

 


2.2  FOV-Part分辨率的计算

相机所需最小分率计算[案] -  视野下能否拍最小的物体 - 传感器靶面像素需求计算方法-缺陷和物体检测计算方法和举例:

[Franklin案】When we are designing a machine vision system, two of our most important considerations are the sizes of the part and the defect.

That is,

  • what is our Field of View (FOV)
  • and within that FOV what is the smallest defect we can reliably detect?

Let’s say the part is 40mm square and we need to detect a .02mm defect. The following formula determines the camera resolution required: FOV/ Defect size = Number of gradations (pixels) 40mm/ .02mm = 2,000

标识输入参数举例
FOVFOV12寸(30.38cm)
Cmin物体需要在靶面上占据3到5个像素点(最少2个)
Smin(Accuracy)最小被测量物体大小:0.25寸(0.635cm)
 输出参数 
某方向 像素需求相机分辨率144 pixel

 

公式2.2

 = 144 

 那么一个640水平像素的相机可以满足要求。

【Franklin案】这里FOV,理解为测距离的长边上。

举例2:

测试的长边为:330cm,测试的物体最小长边为:3cm,计算:

330/3*4 = 440 pixel ,选用640相机可以满足要求

举例3:

 

 


2.3 [案】 - Defect是否满足相机的精度能否满足需求 - 传感器靶面像素需求计算方法-测量和抓取应用计算方法和举例:

determines the camera resolution required:

标识输入参数举例

相机分辨率 Nh

 

 640
FOV(H)FOV(H)330mm
   
FOV(H)FOV(H)2寸(5.08cm)

精度要求 D

Defect

最小测量精度要求0.05 mm

精度要求 D

Defect

最小测量精度要求0.01寸
   
 输出参数 
最大精度能否达成?0.0031寸 < 0.01寸 可以达成
某方向 像素需求相机分辨率144 pixel
   

公式2.3 determines the camera resolution required: 已知被测物需求精度,求相机分辨率

 FOV(H) / D

举例:

测试的长边为:330cm,测试的精度要求为0.05mm,相机精度要求为

330/0.05 = 6600,当然,选用640相机可以满足要求

公式2.3-2 determines the camera resolution Enough or Not: 已知相机分辨率,看是否满足要求

 FOV(H) / Nh = 2/640 

举例:

测试的长边为:2寸,测试的精度要求为0.01寸,计算:640 * 480  能否满足精度要求。

2/640 = 0.0031,选用640相机可以满足要求

 

 


小结:提高精度和减少FOV的办法,多个相机:

 

 


三、靶面尺寸和相机像素关系:

3.1 放大倍率

3.1.1 应用场景-相机放大倍率:

标识输入参数举例
物距视野Hd物距下相机水平视野33cm

靶面尺寸

S

1/4

查表一:

D = 4   mm 

V = 2.4mm

H = 3.2 mm

 输出参数 
Md物距放大倍数=0.0096

 

公式3.1

Md = S/Hd = 3.2mm / 33cm = 0.0096

 

 

3.1.2 精度倒算-镜头放大倍率计算

标识已知输入参数举例
C单位转换 um -> mm1000
S相机像元尺寸(相机型号尺寸)4.8 μm × 4.8 μm
Hmin需求精度 被测物体最小高度0.05 mm
2奈奎施特采样参数>=2
  输出参数 
M放大倍数0.096
R分辨率 - 每毫米可以排列的 

4.8÷(0.05×1,000)=0.096

【Franklin案】 这两个方法,一个站在要拍全物体角度,一个是要拍到最小物体角度。那么到底用哪个来衡量?

我们倒算一下,就是已知放大倍数,求可辨别测量精度:

R = S / M = 4.8 / (C * 0.096) = 0.05 mm = Hmin

R = S / M = 4.8 / (C * 0.0096) = 0.5 mm > H min

也就是满足全尺寸的拍摄的话,最小精度不能满足。


3.1.3 分辨率倒算-镜头放大倍率计算

S = 1/(2*0.1*M) = 1/(2*0.1*0.096)= 52 lp/mm

S = 1/(2*0.1*M) = 1/(2*0.1*0.0096)= 520 lp/mm

 


四、速度 - 针对速度和曝光时间,产品是否拖影影响:

已知:检测范围FOV 为 80 mm *80 mm ,200万像素CCD(1600 *1200),相机或产品运动速度 12M/min = 200mm/s

4.1 曝光时间计算:

T = FOV(H) / (S*R) = 80/ (1600 * 200) = 0.00025s 

标识已知输入参数举例
FOV(H) 长边视野范围80 mm *80 mm
S 相对速度200mm/s
R分辨率(H)1600
 输出 
T曝光时间0.25ms

 


 参考:

1 史上最全的工业相机CCD/CMOS靶面尺寸规格说明

https://www.sipmv.com/support/faq/2557/

 

 

2 工业相机基本参数以及选型参考(二)

https://blog.csdn.net/dcrmg/article/details/52851913?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-12.baidujs&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-12.baidujs

 

 

3 相机的像素精度,物理定位精度,亚像素定位之间的关系和进行像素的固定误差累积

http://www.skcircle.com/?id=1025

 

4    分辨率,精度,公差的关系

https://www.keyence.com.cn/landing/gen/vision_salon_03.jsp

 

5 工业相机视野与分辨率计算(相机选型与计算)

https://blog.csdn.net/qq_25482087/article/details/80824196?utm_medium=distribute.pc_relevant.none-task-blog-baidujs_baidulandingword-1&spm=1001.2101.3001.4242

 

6 工业相机镜头焦距、工作距离、视野等选型的计算

http://www.skcircle.com/?id=1187

 

7 相机焦距与视场角

https://blog.csdn.net/weixin_44278406/article/details/104793007?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-7.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-7.control

 

8 我的参考

https://blog.csdn.net/yellow_hill/article/details/113646713

 

 

 

 

  • 1
    点赞
  • 1
    评论
  • 23
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

评论 1 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页

打赏作者

Franklin

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值