线性代数【14】线性变换 linear transformation

前言:上节讨论了,线性变换的基本向量概念,和坐标系构建,以及线性相关的基本定义和原理。

现在开始正题,线性变换。


1 线性变换在二维空间

如果用函数的概念去理解的话,

可以把线性变换看成是一个输入输出的函数。那么用【Transformation】而不是function的原因,还是在于向量是一个特点意义的概念,例如,前面我们提到的运动(方向特性)。

 上面是对一个向量考虑,如果我们考虑一个向量集,那么有应该是整个二维平面的移动,上节说了,为了方便,当考虑向量集的时候,我们只考虑Tip的位置,也就是向量的坐标点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Franklin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值