—记录学习笔记----
文章目录
混合效应模型称为混合,是因为该模型可以同时对固定效应和随机效应进行建模,固定效应指的就是总体的平均水平,对平均趋势建模,随机效应对这种平均趋势在分组水平上(参与者或主题)建模。
模型解释
模式有两大部分组成:
- 固定效应模型:值被假定为常量,非随机的,(例如,性别、年龄、饮食、时间),通常表示研究中感兴趣的变量,比如不同治疗对患者的效果,治疗为固定效应;不同水果对健康水平的影响,水果为固定效应。
- 表示个体变化的随机效应,随机效应是指的数据中不同组别或不同个体间的变异性,值假定是从随机分布中提取的,本质上是分类变量。所以如果一个变量是连续的,请把他视为固定效应!在实验中,个体被视为随机效应,因为是从各自的总体中随机抽样的,我们希望解释个体内的可变性,同一个个体内的观测值之间的相关结构。或者是不同组别的效应,解释同一组之间的相关结构。
模型表示
Y = X * β + Z * u + ε
Y 是响应变量。
X 是固定效应的设计矩阵。
β 是固定效应系数的向量。
Z 是随机效应的设计矩阵。
u 是随机效应系数的向量。
ε 是残差向量。
理解随机效应和固定效应的例子
假设有4个参与者的虚假数据,他们每个参与者都回答了四个项目,不同的点表示不同参与者。我们想知道项目的难易程度对参与者反应时间的影响。横轴表示单词难度,纵轴表示参与