Numpy中不同维度数组之间的计算(Broadcasting广播机制)

1. numpy数组维度

  numpy中提供了shape属性可以直接查看数组的维度。具体如下:
在这里插入图片描述
  上图中 a a a一维数组,其shape只返回一个元素, b b b为二维数组,其shape有两个元素, c c c为三维数组,其shape中返回三个元素。另外,对数组中的某一行或某一列进行切片操作时也可以形成不同维度的数组,具体如下:
在这里插入图片描述

2. Broadcasting广播机制

  理论上只有维度完全相同的两个数组才能进行运算,但是这个要求太严格了。在numpy中并没有这么严格的限制。具体如下:
在这里插入图片描述
从这个例子中可以看到在numpy中维度不同的array之间可以直接进行运算。这就依赖numpy中的broadcasting广播机制。在numpy中,只要进行运算的两个数组能够在尺寸上兼容,就可以进行运算。numpy中尺寸兼容的定义为:将两个数据的shape靠右对齐,然后在各个维度上进行兼容性判断:若对应维度上的尺寸完全相同或其中一个维度的尺寸为1,则在该维度上是兼容的。对于不存在的维度,则默认是兼容的。
在这里插入图片描述Broadcasting机制并不会扰乱正常的计算逻辑,只会针对最常见的场景自动完成增加维度并复制数据的功能,提高开发效率和运行效率。numpy在进行数组运算时,比如+、-、*、/等,broadcasting机制会自动隐式调用。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考资料
  1. 一般广播规则
### NumPy 数组广播机制概念 NumPy广播机制是一项强大功能,使得不同形状的数组可以在无需显式复制的情况下进行元素级运算。这一特性不仅简化了代码编写过程,还提高了程序运行效率[^2]。 当两个数组的形状不完全相同但满足特定条件时,较小的数组会按照一定规则被扩展到与较大数组相同的尺寸,从而实现逐元素的操作。这种扩展并非实际创建新数据副本,而是通过巧妙索引完成虚拟映射,因此节省了大量的内存资源并加快了计算速度[^3]。 ### 广播机制的工作原理 为了使两个数组能够相加或其他形式组合起来做算术运算,它们必须遵循如下三个核心原则: 1. **从右向左比较维度大小**:如果两者的维数不一样,则在左边补上长度为1的轴直到两者拥有同样多的维度; 2. **对应位置上的维度要么相等,要么其中一个是1**:只有在这种情况下才允许继续下一步;否则抛出异常提示无法广播; 3. **最终结果的shape将是各维度最大值构成的新元组**:即对于每一个维度而言取二者之间的较大者作为该方向的结果尺寸[^4]。 具体来说,在遇到像 `arr * 4` 这样的表达式时——这里假设 `arr` 是一个一维整型数组 `[0, 1, 2, 3, 4]` ——实际上发生了这样的事情:标量 `4` 被视为具有单一元素的一维数组并与原数组进行了匹配,进而实现了乘法操作后的输出\[array([ 0, 4, 8, 12, 16])\]。 更复杂的例子涉及二维甚至更高纬度的数据结构间相互作用。例如给定矩阵A (3×4) 和 向量B (4,) ,则 B 将沿着 A 的第一个轴方向拉伸成形如 `(3,4)` 形状的对象 C 来参与后续处理: ```python import numpy as np a = np.arange(1, 13).reshape((3, 4)) b = np.array([1, 2, 3, 4]) print("Matrix A:") print(a) print("\nVector B before broadcasting:") print(b) result = a + b.reshape(-1, 4)[0] print("\nResult after adding Vector B to Matrix A via Broadcasting:") print(result) ``` 上述代码片段展示了如何利用广播来执行矩阵和向量之间按位求和的过程。注意这里的 `b.reshape(-1, 4)[0]` 实际是为了让解释器明白我们想要的是横向排列的形式而不是默认纵向堆叠的效果[^5]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值