Pyspark机器学习:向量及其常用操作

Spark版本:V3.2.1

  本篇主要介绍pyspark.ml.linalg中的向量操作。

1. DenseVector(稠密向量)
1.1 创建

稠密向量和一般的数组差不多,其创建方法如下:

from pyspark.ml import linalg
import numpy as np
dvect1=linalg.Vectors.dense([1,2,3,4,5])
dvect2=linalg.Vectors.dense(1.2,3,3,4,5)
print(dvect1)
print(dvect2)

其结果如下(注意其数据类型为float型):
在这里插入图片描述

1.2 常用操作
  • 对两个长度相同的向量可以进行加减乘除操作。具体如下:
res1=dvect1+dvect2
res2=dvect1-dvect2
res3=dvect1*dvect2
res4=dvect1/dvect2
print(res1)
print(res2)
print(res3)
print(res4)

其结果如下:
在这里插入图片描述

  • 可以使用numpy.darray中的一些属性
dvec1_shape=dvect1.array.shape
dvec1_size=dvect1.array.size
print(dvec1_shape)# 其结果为:(5,)
print(dvec1_size)# 其结果为:5
  • dot点乘操作
res_1=dvect1.dot([1,2,3,4,5])
res_2=dvect1.dot([0,1,0,0,0])
res_3=dvect1.dot(dvect2)
print(res_1) #结果为55
print(res_2) #结果为2
print(res_3) #结果为57.2
  • 求向量的范式
dvect1=linalg.Vectors.dense([1,2,3,4,5])
norm_0=dvect1.norm(0)
norm_1=dvect1.norm(1)
norm_2=dvect2.norm(2)
print('dvect1的L0范式为:{}'.format(norm_0))
print('dvect1的L1范式为:{}'.format(norm_1))
print('dvect1的L2范式为:{:.3f}'.format(norm_2))

其结果如下:
在这里插入图片描述

  • numNonZeros()统计非0元素的个数
dvect1=linalg.Vectors.dense([1,0,3,0,5])
num_nonzero=dvect1.numNonzeros()
print(num_nonzero)#其结果为3
  • squared_distance()求两个维度相同的向量的平方距离
dvect1=linalg.Vectors.dense([1,0,3])
dvect2=linalg.Vectors.dense([1,1,1])
dist=dvect1.squared_distance(dvect2) #其值为5
  • 取出向量的值
dvect1=linalg.Vectors.dense([1,0,3])
print(dvect1.toArray())
print(dvect1.values)
2. SparseVector(稀疏向量)
2.1 创建

稀疏向量的创建主要有以下几种方式:

  • Vectors.sparse(向量长度, 索引数组,与索引数组所对应的数值数组),其中索引从0开始编号,下同;
  • Vectors.sparse(向量长度, {索引:数值,索引:数值, … \dots })
  • Vectors.sparse(向量长度,[(索引,数值),(索引,数值), … \dots ])

举例如下:

svect1=linalg.Vectors.sparse(3,[0,1],[3.4,4.5])
svect2=linalg.Vectors.sparse(3,{0:3.4,2:4.5})
svect3=linalg.Vectors.sparse(4,[(2,3),(3,2.3)])
2.2 常用操作

稀疏变量中一些操作与稠密向量的操作一致,不再赘述。这里只介绍以下两个操作:

  • toArray显示稀疏变量的所有数值
svect1=linalg.Vectors.sparse(3,[0,1],[3.4,4.5])
svect2=linalg.Vectors.sparse(3,{0:3.4,2:4.5})
svect3=linalg.Vectors.sparse(4,[(2,3),(3,2.3)])
print(svect1.toArray())
print(svect2.toArray())
print(svect3.toArray())

其结果如下:
在这里插入图片描述

  • indices()返回稀疏向量中非0元素的索引值
svect1=linalg.Vectors.sparse(3,[0,1],[3.4,4.5])
svect2=linalg.Vectors.sparse(3,{0:3.4,2:4.5})
svect3=linalg.Vectors.sparse(4,[(2,3),(3,2.3)])
print(svect1.indices) #返回[0 1](array类型,下同)
print(svect2.indices) #返回[0 2]
print(svect3.indices) #返回[2 3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值