Halcon中的HObject转换到openCV的Mat

本文介绍如何从Halcon的HObject转换为OpenCV的Mat格式,详细讲解了使用C++与C#进行跨平台图像处理的方法。通过具体代码示例,展示了参数设置与图像尺寸调整的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Halcon中的HObject转换到openCV的Mat


灰度图转换

将Hobject转换为openCV中的Mat,该转换过程需要用到的参数有图像的width、height与图像数据的地址


C++端代码

C#端通过调中C++的dll来将HObject转换为Mat。

实现函数
void CalibImg::genImg(unsigned char* ptr, int& width, int& height)
{
	Src = Mat(height, width, CV_8UC1, ptr);

	Size ksize = Src.size();
	cout << "width: "<<ksize.width <<"     height: "<<ksize.height<< endl;
	resize(Src, Src, Size(0, 0), 0.5, 0.5);


	imshow("Src", Src);
	waitKey(0);
}
封装函数
SAVEROIDLL_API void bitmap2Mat(unsigned char* ptr, int& width, int& height)
{
	calibImg.genImg(ptr, width, height);
}


c#端代码
导入dll
[DllImport("saveROIDLL.dll", EntryPoint = "bitmap2Mat")]
public static extern void bitmap2Mat(IntPtr ptr, ref int width, ref int height);

调用接口
void hObject2Mat()
{
	HTuple pointer, type, hWidth, hHeight;
	HOperatorSet.GetImagePointer1(Img, out pointer, out type, out hWidth, out hHeight);
	int width = hWidth.I;
	int height = hHeight.I;
	xmlOp.bitmap2Mat(pointer.IP, ref width, ref height);
}
### 将 OpenCVMat 对象转换HalconHObject 为了实现从 OpenCV `Mat` 到 Halcon `HObject` 的转换,可以采用一种间接的方式:先将 `Mat` 转换为标准图像格式(如 BMP 或 PNG),再利用 Halcon 提供的功能读取该文件并创建相应的 `HObject` 实例。 另一种更高效的方法是在内存层面直接操作数据。下面提供了一种基于指针访问和数据复制的技术方案来完成这一过程: #### 方法一:通过临时文件过渡 这种方法较为简单直观,适用于初学者或调试阶段[^1]。 ```cpp #include <iostream> #include "halcon.h" #include <opencv2/opencv.hpp> void Mat_to_HObject_File(cv::Mat& src, Hobject& dst) { std::string tempFile = "temp.bmp"; cv::imwrite(tempFile, src); read_image(&dst, (HTuple)(std::string("temp").c_str())); } ``` 此方法依赖于磁盘IO,在性能上不如第二种方法理想;但在某些情况下可能更加稳定可靠。 #### 方法二:直接内存映射转换 对于追求效率的应用场景来说,推荐使用这种方式来进行快速的数据交换[^2]。 ```cpp #include <iostream> #include "halcon.h" #include <opencv2/opencv.hpp> void Mat_to_HObject_Directly(const cv::Mat& mat, Hobject& hobj) { // 获取图像基本信息 int width = mat.cols; int height = mat.rows; // 创建一个新的 HALCON 图像对象 gen_empty_obj(&hobj); // 假设输入的是灰度图,如果是彩色图则需调整通道数 HTuple type = "byte"; // 可能需要根据实际情况修改 // 使用 create_image 函数分配空间给新创建的对象 create_image(&hobj, type, width, height); // 获取目标图像的指针以便写入像素值 double* p_data = nullptr; get_image_pointer1(hobj, reinterpret_cast<Hlong*>(&p_data), NULL, NULL, NULL); // 复制源矩阵中的数据至HALCON图像中 memcpy(p_data, mat.ptr<uchar>(0), sizeof(uchar)*mat.total()); } // 测试函数调用 int main() { cv::Mat img = cv::imread("example.jpg", cv::IMREAD_GRAYSCALE); if(img.empty()) return -1; Hobject ho_Image; Mat_to_HObject_Directly(img, ho_Image); disp_img(ho_Image); // 显示图片用于验证效果 return 0; } ``` 上述代码展示了如何不经过任何中间介质而直接在两个不同框架之间传递图像信息。需要注意的是,这里假设了输入图为单通道灰度图形式,如果处理多通道颜色图像,则还需要额外考虑色彩模型之间的差异以及适当调整代码逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值