梯度的本质:寻找变化最快的方向
在优化问题中,我们希望找到一组参数
,使得目标函数
达到最小值(或最大值)。梯度告诉我们:
- 当前点(当前参数)处,函数值增加最快的方向。
- 反向沿梯度下降的方向,函数值减少最快。
目标函数为:
我们希望通过梯度下降法找到
的最小值。以下是具体操作步骤:
1. 计算梯度
梯度是函数值增加最快的方向,其计算公式为:
对
求偏导:
表示对
的变化率。
对 y 求偏导:
表示 对
的变化率。
梯度结果:
梯度是一个向量,它指向函数值增加最快的方向。
2. 梯度下降法的核心思想
梯度下降法通过沿梯度的反方向移动来更新参数,从而使目标函数值逐步减少。
参数更新公式:
- x 和 y 是当前点的坐标(参数值)。
是学习率,控制每一步的移动幅度。