梯度下降法的简单、完整、详细的操作全流程实战

梯度的本质:寻找变化最快的方向

在优化问题中,我们希望找到一组参数\theta,使得目标函数J(\theta)达到最小值(或最大值)。梯度告诉我们:

  • 当前点(当前参数)处,函数值增加最快的方向。
  • 反向沿梯度下降的方向,函数值减少最快。

目标函数为:

f(x, y) = x^2 + 3xy + y^2

我们希望通过梯度下降法找到f(x, y) 的最小值。以下是具体操作步骤:

1. 计算梯度(∇f(x, y))

梯度是函数值增加最快的方向,其计算公式为:

\nabla f(x, y) = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)

x 求偏导:

\frac{\partial f}{\partial x} = 2x + 3y

表示f(x, y)x的变化率。

y 求偏导:

\frac{\partial f}{\partial y} = 3x + 2y

表示f(x,y)f(x, y)f(x,y)y 的变化率。

梯度结果:

\nabla f(x, y) = \left( 2x + 3y, 3x + 2y \right)

梯度是一个向量,它指向函数值增加最快的方向。


2. 梯度下降法的核心思想

梯度下降法通过沿梯度的反方向移动来更新参数,从而使目标函数值逐步减少。

参数更新公式:

x \gets x - \alpha \frac{\partial f}{\partial x}, \quad y \gets y - \alpha \frac{\partial f}{\partial y}

  • x 和 y 是当前点的坐标(参数值)。
  • \alpha是学习率,控制每一步的移动幅度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值