深入浅出Pandas-5:计算同比环比与相关性判定

引言

在数据分析中,理解数据的变化趋势至关重要。无论是企业销售数据的分析还是经济数据的研究,计算同比(Year-Over-Year)和环比(Month-Over-Month)能够帮助我们识别趋势及其演变。同时,Pandas作为强大的数据分析工具,提供了一系列便捷的方法来进行这些计算。本文将深入探讨如何使用Pandas计算同比和环比、进行窗口计算以及进行相关性判定,并指出新手常见的错误与需注意的地方,助你更高效地处理数据。

计算同比和环比

1. 同比计算

同比是指某一时期与上一年度同一时期的数值进行比较。比如,我们可以比较2023年1月与2022年1月的销售数据,来计算销售增长率。

示例代码:

假设我们有一个销售数据集:

import pandas as pd

data = {
    'Month': ['2022-01', '2022-02', '2022-03', '2023-01', '2023-02'],
    'Sales': [200, 250, 300, 220, 270]
}

df = pd.DataFrame(data)
df['Month'] = pd.to_datetime(df['Month'])

# 计算同比
df['YoY Change'] = df['Sales'].pct_change(12) * 100  # 按月计算同比
print(df)

2. 环比计算

环比是指某一时期与上一个时期的数值进行比较。比如,我们可以比较2023

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值