计算几何入门

概述

在打区域赛的时候,遇到计算几何可能就会望而生畏,因为码量大,细节多,正确率低,这就使大部分计算几何会成为金牌题,出线题,争冠题。但是本次的学习的目的是防止出题人会出一些铜牌银牌的计算几何,从而导致一点没学计算几何的人会吃很大的亏。一般铜牌银牌的计算几何设计的知识点很少,到点,线,多边形就停了,圆都很少涉及。

前置知识

几何知识

中学几何

平面几何

直角坐标系,极坐标系

正弦定理,余弦定理

向量

浮点数与精度问题

f l o a t float float:基本不用

d o u b l e double double:双精度浮点类型

l o n g long long d o u b l e double double:扩展精度浮点类型

结论:

若问题能用整数解决就不用浮点数解决

不用float,视情况用long double

减少数学函数的使用(开方,三角函数)

比较时加入容限,即 e p s eps eps

二维几何

点,线

向量

向量: x , y x,y x,y

支持四则运算:

向量+向量

向量-向量

向量*向量

向量/向量

向量 A B ⃗ \vec{AB} AB 可以通过 B ⃗ − A ⃗ \vec{B}-\vec{A} B A

叉积

c j ( a , b ) = a . x ∗ b . y − a . y ∗ b . x = ∣ a ∣ ∗ ∣ b ∣ ∗ s i n < a , b > cj(a,b)=a.x*b.y-a.y*b.x=|a|*|b|*sin<a,b> cj(a,b)=a.xb.ya.yb.x=absin<a,b>

作用:三角形的面积,判断点在向量的哪一侧,判平行等等

点积

d j ( a , b ) = a . x ∗ b . x + a . y ∗ b . y = ∣ a ∣ ∗ ∣ b ∣ ∗ c o s < a , b > dj(a,b)=a.x*b.x+a.y*b.y=|a|*|b|*cos<a,b> dj(a,b)=a.xb.x+a.yb.y=abcos<a,b>

作用:计算两向量夹角,判断两向量的同向关系,判断垂直等等

旋转

v ′ = ( c o s α ∗ x − s i n α ∗ y , s i n α ∗ x + c o s α ∗ y ) v^{'}=(cos\alpha *x-sin\alpha*y,sin\alpha *x+cos\alpha *y) v=(cosαxsinαy,sinαx+cosαy)

极角序

极角是在极坐标下的角度,某些题可以按极角序排序,然后顺序做。

多边形

多边形 { ① : 面积 ② : 点包含 ③ : 凸包 ④ : 旋转卡壳 ⑤ : 切多边形 面积: S = 1 2 ∑ i = 0 n P i ∗ P ( i + 1 ) % n 点包含:以要判断的点为起点作一射线,计算该设点与多边形的交点数目 若为偶数,则在多边形外,为奇数,在多边形内 多边形\begin{cases} ①:面积\\ ②:点包含\\ ③:凸包\\ ④:旋转卡壳\\ ⑤:切多边形 \end{cases}\\ 面积:S=\frac 12 \sum_{i=0}^{n}P_i*P_{(i+1)\%n}\\ 点包含:以要判断的点为起点作一射线,计算该设点与多边形的交点数目\\ 若为偶数,则在多边形外,为奇数,在多边形内 多边形 :面积:点包含:凸包:旋转卡壳:切多边形面积:S=21i=0nPiP(i+1)%n点包含:以要判断的点为起点作一射线,计算该设点与多边形的交点数目若为偶数,则在多边形外,为奇数,在多边形内

在这里插入图片描述

在这里插入图片描述

用一个圆心+半径 r r r就能可以代表一个圆

涉及到的内容有:

圆与直线的交点

圆与圆的交点

圆与多边形的面积并

圆的面积并

题目:

Crazy Town

题意:告诉你一条线段(家和学校),再给 n n n条直线,问有多少条直线会和这条线段相交

做法:最基本的几何知识,将坐标带进去比大小即可,代码如下:

/*
coder:sunshine
school:njupt
*/
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'  //交互题删掉
#define x first
#define y second
typedef long long ll;
typedef pair<int, int> pii;
constexpr int mod = 1e9 + 7;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int ans = 0;
    vector<double> aa(5);
    for (int i = 1; i <= 4; i++)
        cin >> aa[i];
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++) {
        int a, b, c;
        cin >> a >> b >> c;
        double a1 = a * aa[1] + b * aa[2] + c;
        double a2 = a * aa[3] + b * aa[4] + c;
        if (a1 > a2)
            swap(a1, a2);
        if (a1 < 0 && a2 > 0)
            ans++;
    }
    cout << ans << endl;
    return 0;
}

神秘大三角

题意:给一个三角形和一个点判断位置关系

做法:叉积的基本应用,根据叉积正负在来判断位置,代码如下:

/*
coder:sunshine
school:njupt
*/
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'  //交互题删掉
#define x first
#define y second
typedef long long ll;
typedef pair<int, int> pii;
constexpr int mod = 1e9 + 7;

typedef long long db;
const db EPS = 0;

inline int sign(db a) {
    return a < -EPS ? -1 : a > EPS;
}

inline int cmp(db a, db b) {
    return sign(a - b);
}

struct P {
    db x, y;
    P() {}
    P(db _x, db _y) : x(_x), y(_y) {}
    P operator+(P p) { return {x + p.x, y + p.y}; }
    P operator-(P p) { return {x - p.x, y - p.y}; }
    P operator*(db d) { return {x * d, y * d}; }

    bool operator<(P p) const {
        int c = cmp(x, p.x);
        if (c)
            return c == -1;
        return cmp(y, p.y) == -1;
    }

    bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; }

    db dot(P p) { return x * p.x + y * p.y; }
    db det(P p) { return x * p.y - y * p.x; }

    void read() { cin >> x >> y; }
    int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
};

P aa[3];
P p;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    for (int i = 0; i < 4; i++) {
        char a, b, c;
        int e, f;
        cin >> a >> e >> b >> f >> c;
        if (i != 3) {
            aa[i].x = e;
            aa[i].y = f;
        } else {
            p.x = e, p.y = f;
        }
    }

    int l = 0, r = 0;
    for (int i = 0; i < 3; i++) {
        P a = p - aa[i];
        P b = p - aa[(i + 1) % 3];
        int d = a.det(b);
        if (d < 0)
            l++;
        if (d > 0)
            r++;
    }
    if (l == 3 || r == 3)
        cout << 1 << endl;
    else if (r > 0 && l > 0)
        cout << 2 << endl;
    else if (l + r == 1)
        cout << 4 << endl;
    else
        cout << 3 << endl;
    return 0;
}

oil

题意:n条平行的线段,再来一条直线,问最多能和多少线段相交

做法:有个结论:最终最优的直线一定经过某条线段的左端点和一条直线的左端点,所以先按极角序排序,枚举左端点,在枚举其他直线,算每种情况下的答案,取个最大值。

注意:这里可以不算斜率 y / x y/x y/x,而算 x / y x/y x/y,从而避免了竖线的情况

在这里插入图片描述

/*
coder:sunshine
school:njupt
*/
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'  //交互题删掉
typedef long long ll;
typedef pair<int, int> pii;
constexpr int mod = 1e9 + 7;
#include <bits/stdc++.h>
using namespace std;

typedef long long db;
const db EPS = 0;

inline int sign(db a) {
    return a < -EPS ? -1 : a > EPS;
}

inline int cmp(db a, db b) {
    return sign(a - b);
}

struct P {
    db x, y;
    P() {}
    P(db _x, db _y) : x(_x), y(_y) {}
    P operator+(P p) { return {x + p.x, y + p.y}; }
    P operator-(P p) { return {x - p.x, y - p.y}; }
    P operator*(db d) { return {x * d, y * d}; }

    bool operator<(P p) const {
        int c = cmp(x, p.x);
        if (c)
            return c == -1;
        return cmp(y, p.y) == -1;
    }

    bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; }

    db dot(P p) { return x * p.x + y * p.y; }
    db det(P p) { return x * p.y - y * p.x; }

    void read() { cin >> x >> y; }
    int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
};

#define cross(p1, p2, p3) \
    ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y))
#define crossOp(p1, p2, p3) sign(cross(p1, p2, p3))

// 直线 p1p2, q1q2 是否恰有一个交点
bool chkLL(P p1, P p2, P q1, P q2) {
    db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    return sign(a1 + a2) != 0;
}

// 判断区间 [l1, r1], [l2, r2] 是否相交
bool intersect(db l1, db r1, db l2, db r2) {
    if (l1 > r1)
        swap(l1, r1);
    if (l2 > r2)
        swap(l2, r2);
    return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1);
}

// 线段 p1p2, q1q2 相交
bool isSS(P p1, P p2, P q1, P q2) {
    return intersect(p1.x, p2.x, q1.x, q2.x) &&
           intersect(p1.y, p2.y, q1.y, q2.y) &&
           crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0;
}

// 线段 p1p2, q1q2 严格相交
bool isSS_strict(P p1, P p2, P q1, P q2) {
    return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0;
}

// m 在 a 和 b 之间
bool isMiddle(db a, db m, db b) {
    /*if (a > b) swap(a, b);
    return cmp(a, m) <= 0 && cmp(m, b) <= 0;*/
    return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}

bool isMiddle(P a, P m, P b) {
    return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}

// 点 p 在线段 p1p2 上
bool onSeg(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
}
// q1q2 和 p1p2 的交点 在 p1p2 上?

// 点 p 严格在 p1p2 上
bool onSeg_strict(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 &&
           sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
}
int n;
constexpr int N = 2010;
pair<P, int> evt[2 * N];
P p[N][2];
ll solve(P o) {
    int t = 0;
    for (int i = 0; i < n; i++) {
        if (p[i][0].y == o.y)
            continue;
        P p1 = p[i][0] - o, p2 = p[i][1] - o;
        int len = p[i][1].x - p[i][0].x;
        if (p[i][1].y > o.y) {
            evt[t++] = {p2, len};
            evt[t++] = {p1, -len};
        } else {
            evt[t++] = {p1 * (-1), len};
            evt[t++] = {p2 * (-1), -len};
        }
    }
    sort(evt, evt + t, [&](pair<P, int>& a, pair<P, int>& b) {
        auto d = a.first.det(b.first);
        if (d != 0)
            return d > 0;
        else
            return a.second > b.second;
    });
    ll ans = 0, cur = 0;
    for (int i = 0; i < t; i++) {
        cur += evt[i].second;
        ans = max(ans, cur);
    }
    return ans;
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    cin >> n;
    for (int i = 0; i < n; i++) {
        int x1, x2, y;
        cin >> x1 >> x2 >> y;
        if (x1 > x2)
            swap(x1, x2);
        p[i][0] = P(x1, y);
        p[i][1] = P(x2, y);
    }
    ll ans = 0;
    for (int i = 0; i < n; i++) {
        ans = max(ans,
                  max(solve(p[i][0]), solve(p[i][1])) + p[i][1].x - p[i][0].x);
    }
    cout << ans << endl;
    return 0;
}

Grass

题意:给定平面上 n 个点,要求选出其中 5 个不同的点,并选定 1 个中心点 A 向其他 4 个点 B, C, D,E 连出 4 条线段,要求 这四条线段任意两条的交点都仅有中心点 A。

做法:把玩样例后,可以发现:选出的 5 个点能构造出可行解,当且仅当 这 5 个点不全共线。所以做法是先判断有没有解,即是否全部共线,是的话就无解,然后找出五个不共线的点,依次判断是否可以作为中心点。

/*
coder:sunshine
school:njupt
*/
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'  //交互题删掉
typedef long long ll;
typedef pair<int, int> pii;
constexpr int mod = 1e9 + 7;

typedef long long db;
const db EPS = 0;

inline int sign(db a) {
    return a < -EPS ? -1 : a > EPS;
}

inline int cmp(db a, db b) {
    return sign(a - b);
}

struct P {
    db x, y;
    P() {}
    P(db _x, db _y) : x(_x), y(_y) {}
    P operator+(P p) { return {x + p.x, y + p.y}; }
    P operator-(P p) { return {x - p.x, y - p.y}; }
    P operator*(db d) { return {x * d, y * d}; }

    bool operator<(P p) const {
        int c = cmp(x, p.x);
        if (c)
            return c == -1;
        return cmp(y, p.y) == -1;
    }

    bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; }

    db dot(P p) { return x * p.x + y * p.y; }
    db det(P p) { return x * p.y - y * p.x; }

    void read() { cin >> x >> y; }
    int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
};

#define cross(p1, p2, p3) \
    ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y))
#define crossOp(p1, p2, p3) sign(cross(p1, p2, p3))

// 直线 p1p2, q1q2 是否恰有一个交点
bool chkLL(P p1, P p2, P q1, P q2) {
    db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    return sign(a1 + a2) != 0;
}

// 判断区间 [l1, r1], [l2, r2] 是否相交
bool intersect(db l1, db r1, db l2, db r2) {
    if (l1 > r1)
        swap(l1, r1);
    if (l2 > r2)
        swap(l2, r2);
    return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1);
}

// 线段 p1p2, q1q2 相交
bool isSS(P p1, P p2, P q1, P q2) {
    return intersect(p1.x, p2.x, q1.x, q2.x) &&
           intersect(p1.y, p2.y, q1.y, q2.y) &&
           crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0;
}

// 线段 p1p2, q1q2 严格相交
bool isSS_strict(P p1, P p2, P q1, P q2) {
    return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0;
}

// m 在 a 和 b 之间
bool isMiddle(db a, db m, db b) {
    /*if (a > b) swap(a, b);
    return cmp(a, m) <= 0 && cmp(m, b) <= 0;*/
    return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}

bool isMiddle(P a, P m, P b) {
    return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}

// 点 p 在线段 p1p2 上
bool onSeg(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
}
// q1q2 和 p1p2 的交点 在 p1p2 上?

// 点 p 严格在 p1p2 上
bool onSeg_strict(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 &&
           sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
}

constexpr int N = 25010;
P p[N];
int n;

void solve() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        ll a, b;
        cin >> a >> b;
        p[i] = {a, b};
    }
    if (n < 5) {
        cout << "NO" << endl;
        return;
    }
    vector<P> c;
    int idx = -1;
    for (int i = 2; i < n; i++) {
        if (crossOp(p[0], p[1], p[i]) != 0)
            idx = i;
    }
    if (idx == -1) {
        cout << "NO" << endl;
        return;
    }
    c.push_back(p[idx]);
    c.push_back(p[0]);
    c.push_back(p[1]);
    for (int i = 2; i < n; i++) {
        if (i != idx && c.size() < 5)
            c.push_back(p[i]);
    }
    cout << "YES" << endl;
    for (int i = 0; i < 5; i++) {
        bool ok = 1;
        for (int j = 0; j < 5; j++) {
            for (int k = j + 1; k < 5; k++) {
                if (i != j && i != k) {
                    if (crossOp(c[i], c[j], c[k]) == 0 &&
                        !onSeg(c[j], c[k], c[i]))
                        ok = 0;
                }
            }
        }
        if (ok) {
            cout << c[i].x << " " << c[i].y << endl;
            for (int j = 0; j < 5; j++) {
                if (i != j)
                    cout << c[j].x << " " << c[j].y << endl;
            }
            break;
        }
    }
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t = 1;
    cin >> t;
    while (t--)
        solve();
    return 0;
}

How Many Triangles

题意:给n个点,求能组成多少个锐角三角形

做法:直接求不好求,于是可以正难则反,用总的三角形个数减去直角三角形,钝角三角形
有 n 个点 则总的三角形数: C n 3 对应的锐角 + 直角 + 钝角个数为: 3 C n 3 假设有 x 个直角 , y 个钝角 则锐角三角形个数为 : ( 3 C n 3 − 2 ∗ x − x − 2 ∗ y ) / 3 = C n 3 − x − y 有n个点\\ 则总的三角形数:C_n^3 对应的锐角+直角+钝角个数为:3C_n^3\\ 假设有x个直角,y个钝角\\ 则锐角三角形个数为:\\ (3C_n^3-2*x-x-2*y)/3=C_n^3-x-y n个点则总的三角形数:Cn3对应的锐角+直角+钝角个数为:3Cn3假设有x个直角,y个钝角则锐角三角形个数为:(3Cn32xx2y)/3=Cn3xy
于是做法就出来了,按照极角序排个序,然后双指针扫一下,统计个数即可。

有些细节需要注意:平角不要被算两次

/*
coder:sunshine
school:njupt
*/
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'  //交互题删掉
typedef long long ll;
typedef pair<int, int> pii;
constexpr int mod = 1e9 + 7;

typedef long long db;
const db EPS = 0;

inline int sign(db a) {
    return a < -EPS ? -1 : a > EPS;
}

inline int cmp(db a, db b) {
    return sign(a - b);
}

struct P {
    db x, y;
    P() {}
    P(db _x, db _y) : x(_x), y(_y) {}
    P operator+(P p) { return {x + p.x, y + p.y}; }
    P operator-(P p) { return {x - p.x, y - p.y}; }
    P operator*(db d) { return {x * d, y * d}; }

    bool operator<(P p) const {
        int c = cmp(x, p.x);
        if (c)
            return c == -1;
        return cmp(y, p.y) == -1;
    }

    bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; }

    db dot(P p) { return x * p.x + y * p.y; }
    db det(P p) { return x * p.y - y * p.x; }

    void read() { cin >> x >> y; }
    int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
};

#define cross(p1, p2, p3) \
    ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y))
#define crossOp(p1, p2, p3) sign(cross(p1, p2, p3))

// 直线 p1p2, q1q2 是否恰有一个交点
bool chkLL(P p1, P p2, P q1, P q2) {
    db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    return sign(a1 + a2) != 0;
}

// 判断区间 [l1, r1], [l2, r2] 是否相交
bool intersect(db l1, db r1, db l2, db r2) {
    if (l1 > r1)
        swap(l1, r1);
    if (l2 > r2)
        swap(l2, r2);
    return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1);
}

// 线段 p1p2, q1q2 相交
bool isSS(P p1, P p2, P q1, P q2) {
    return intersect(p1.x, p2.x, q1.x, q2.x) &&
           intersect(p1.y, p2.y, q1.y, q2.y) &&
           crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0;
}

// 线段 p1p2, q1q2 严格相交
bool isSS_strict(P p1, P p2, P q1, P q2) {
    return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0;
}

// m 在 a 和 b 之间
bool isMiddle(db a, db m, db b) {
    /*if (a > b) swap(a, b);
    return cmp(a, m) <= 0 && cmp(m, b) <= 0;*/
    return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}

bool isMiddle(P a, P m, P b) {
    return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}

// 点 p 在线段 p1p2 上
bool onSeg(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
}
// q1q2 和 p1p2 的交点 在 p1p2 上?

// 点 p 严格在 p1p2 上
bool onSeg_strict(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 &&
           sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
}
constexpr int N = 2010;
P p[N], q[N * 2];
int n;
void solve() {
    for (int i = 0; i < n; i++) {
        int x, y;
        cin >> x >> y;
        p[i] = P(x, y);
    }
    ll ans = (ll)n * (n - 1) * (n - 2) / 6;
    for (int i = 0; i < n; i++) {
        int t = 0;
        for (int j = 0; j < n; j++) {
            if (j != i)
                q[t++] = p[j] - p[i];
        }
        sort(q, q + t, [&](P a, P b) {
            int qa = a.quad(), qb = b.quad();
            if (qa != qb)
                return qa < qb;
            else
                return sign(a.det(b)) > 0;
        });
        //破环为链
        for (int j = 0; j < t; j++)
            q[j + t] = q[j];
        int l = -1, r = -1;
        for (int j = 0; j < t; j++) {
            l = max(l, j + 1);
            r = max(r, j + 1);
            //判断是否小于90度
            auto check1 = [&](P a, P b, int idl) {
                if (q[j].dot(q[l]) > 0) {
                    if (q[j].det(q[l]) != 0) {
                        return q[j].det(q[l]) > 0;
                    } else
                        return idl < t;
                }
                return false;
            };
            while (l < j + t && check1(q[j], q[l], l))
                l++;
            //判断 >=pi/2,<=pi
            auto check2 = [&](P a, P b, int idr) {
                auto d = a.det(b);
                if (d != 0)
                    return d > 0;
                return idr < t;
            };
            while (r < j + t && check2(q[j], q[r], r))
                r++;
            ans -= r - l;
        }
    }
    cout << ans << endl;
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    while (cin >> n)
        solve();
    return 0;
}

Airport Construction

题意:在一个多边形内,伸出一条线段,求线段最长

做法:有一个比较容易想到的结论,就是线段一定经过多边形的顶点,跟上面的oil结论类似,但不一定两个端点在顶点上(下图是反例)。n是200的范围,可以考虑 n 4 n^4 n4加点剪枝过。即枚举两个顶点,生成的线段计算出与多边形相交的长度。

在这里插入图片描述

#include <bits/stdc++.h>
using namespace std;

typedef double db;
#define rep(i, a, n) for (int i = a; i < n; i++)
const db EPS = 1e-9;

inline int sign(db a) {
    return a < -EPS ? -1 : a > EPS;
}

inline int cmp(db a, db b) {
    return sign(a - b);
}

struct P {
    db x, y;
    P() {}
    P(db _x, db _y) : x(_x), y(_y) {}
    P operator+(P p) { return {x + p.x, y + p.y}; }
    P operator-(P p) { return {x - p.x, y - p.y}; }
    P operator*(db d) { return {x * d, y * d}; }
    P operator/(db d) { return {x / d, y / d}; }

    bool operator<(P p) const {
        int c = cmp(y, p.y);
        if (c)
            return c == -1;
        return cmp(x, p.x) == -1;
    }

    bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; }

    db dot(P p) { return x * p.x + y * p.y; }
    db det(P p) { return x * p.y - y * p.x; }

    db distTo(P p) { return (*this - p).abs(); }
    db alpha() { return atan2(y, x); }
    void read() {
        int x_, y_;
        scanf("%d%d", &x_, &y_);
        x = x_, y = y_;
    }

    void write() { cout << "(" << x << "," << y << ")" << endl; }
    db abs() { return sqrt(abs2()); }
    db abs2() { return x * x + y * y; }
    P rot90() { return P(-y, x); }
    P unit() { return *this / abs(); }
    int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
    P rot(db an) {
        return {x * cos(an) - y * sin(an), x * sin(an) + y * cos(an)};
    }
};

#define cross(p1, p2, p3) \
    ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y))
#define crossOp(p1, p2, p3) sign(cross(p1, p2, p3))

// 直线 p1p2, q1q2 是否恰有一个交点
bool chkLL(P p1, P p2, P q1, P q2) {
    db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    return sign(a1 + a2) != 0;
}

// 求直线 p1p2, q1q2 的交点
P isLL(P p1, P p2, P q1, P q2) {
    db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    return (p1 * a2 + p2 * a1) / (a1 + a2);
}

// 判断区间 [l1, r1], [l2, r2] 是否相交
bool intersect(db l1, db r1, db l2, db r2) {
    if (l1 > r1)
        swap(l1, r1);
    if (l2 > r2)
        swap(l2, r2);
    return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1);
}

// 线段 p1p2, q1q2 相交
bool isSS(P p1, P p2, P q1, P q2) {
    return intersect(p1.x, p2.x, q1.x, q2.x) &&
           intersect(p1.y, p2.y, q1.y, q2.y) &&
           crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0;
}

// 线段 p1p2, q1q2 严格相交
bool isSS_strict(P p1, P p2, P q1, P q2) {
    return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0;
}

// m 在 a 和 b 之间
bool isMiddle(db a, db m, db b) {
    /*if (a > b) swap(a, b);
    return cmp(a, m) <= 0 && cmp(m, b) <= 0;*/
    return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}

bool isMiddle(P a, P m, P b) {
    return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}

// 点 p 在线段 p1p2 上
bool onSeg(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
}
// q1q2 和 p1p2 的交点 在 p1p2 上?

// 点 p 严格在 p1p2 上
bool onSeg_strict(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 &&
           sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
}

// 求 q 到 直线p1p2 的投影(垂足) ⚠️ : p1 != p2
P proj(P p1, P p2, P q) {
    P dir = p2 - p1;
    return p1 + dir * (dir.dot(q - p1) / dir.abs2());
}

// 求 q 以 直线p1p2 为轴的反射
P reflect(P p1, P p2, P q) {
    return proj(p1, p2, q) * 2 - q;
}

// 求 q 到 线段p1p2 的最小距离
db nearest(P p1, P p2, P q) {
    if (p1 == p2)
        return p1.distTo(q);
    P h = proj(p1, p2, q);
    if (isMiddle(p1, h, p2))
        return q.distTo(h);
    return min(p1.distTo(q), p2.distTo(q));
}

// 求 线段p1p2 与 线段q1q2 的距离
db disSS(P p1, P p2, P q1, P q2) {
    if (isSS(p1, p2, q1, q2))
        return 0;
    return min(min(nearest(p1, p2, q1), nearest(p1, p2, q2)),
               min(nearest(q1, q2, p1), nearest(q1, q2, p2)));
}

db area(vector<P> ps) {
    db ret = 0;
    rep(i, 0, ps.size()) ret += ps[i].det(ps[(i + 1) % ps.size()]);
    return ret / 2;
}

int contain(vector<P> ps, P p) {  // 2:inside,1:on_seg,0:outside
    int n = ps.size(), ret = 0;
    rep(i, 0, n) {
        P u = ps[i], v = ps[(i + 1) % n];
        if (onSeg(u, v, p))
            return 1;
        if (cmp(u.y, v.y) <= 0)
            swap(u, v);
        if (cmp(p.y, u.y) > 0 || cmp(p.y, v.y) <= 0)
            continue;
        ret ^= crossOp(p, u, v) > 0;
    }
    return ret * 2;
}

vector<P> convexHull(vector<P> ps) {
    int n = ps.size();
    if (n <= 1)
        return ps;
    sort(ps.begin(), ps.end());
    vector<P> qs(n * 2);
    int k = 0;
    for (int i = 0; i < n; qs[k++] = ps[i++])
        while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0)
            --k;
    for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
        while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0)
            --k;
    qs.resize(k - 1);
    return qs;
}

vector<P> convexHullNonStrict(vector<P> ps) {
    // caution: need to unique the Ps first
    int n = ps.size();
    if (n <= 1)
        return ps;
    sort(ps.begin(), ps.end());
    vector<P> qs(n * 2);
    int k = 0;
    for (int i = 0; i < n; qs[k++] = ps[i++])
        while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0)
            --k;
    for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
        while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0)
            --k;
    qs.resize(k - 1);
    return qs;
}

db convexDiameter(vector<P> ps) {
    int n = ps.size();
    if (n <= 1)
        return 0;
    int is = 0, js = 0;
    rep(k, 1, n) is = ps[k] < ps[is] ? k : is, js = ps[js] < ps[k] ? k : js;
    int i = is, j = js;
    db ret = ps[i].distTo(ps[j]);
    do {
        if ((ps[(i + 1) % n] - ps[i]).det(ps[(j + 1) % n] - ps[j]) >= 0)
            (++j) %= n;
        else
            (++i) %= n;
        ret = max(ret, ps[i].distTo(ps[j]));
    } while (i != is || j != js);
    return ret;
}

vector<P> convexCut(const vector<P>& ps, P q1, P q2) {
    vector<P> qs;
    int n = ps.size();
    rep(i, 0, n) {
        P p1 = ps[i], p2 = ps[(i + 1) % n];
        int d1 = crossOp(q1, q2, p1), d2 = crossOp(q1, q2, p2);
        if (d1 >= 0)
            qs.push_back(p1);
        if (d1 * d2 < 0)
            qs.push_back(isLL(p1, p2, q1, q2));
    }
    return qs;
}

int n;
vector<P> p;
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin >> n;
    p.resize(n);
    for (int i = 0; i < n; i++) {
        p[i].read();
    }
    db ans = 0;
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++) {
            vector<P> q;
            for (int k = 0; k < n; k++) {
                if (crossOp(p[i], p[j], p[k]) == 0)
                    q.push_back(p[k]);
                if (crossOp(p[i], p[j], p[k]) *
                        crossOp(p[i], p[j], p[(k + 1) % n]) <
                    0)
                    q.push_back(isLL(p[i], p[j], p[k], p[(k + 1) % n]));
            }
            sort(q.begin(), q.end());
            q.erase(unique(q.begin(), q.end()), q.end());  //去重一下
            int m = q.size();
            int s = -1, t = -1;
            for (int k = 0; k < m; k++) {
                if (p[i] == q[k])
                    s = k;
                if (p[j] == q[k])
                    t = k;
            }
            if (s > t)
                swap(s, t);
            if (q[0].distTo(q[m - 1]) <
                ans)  //剪枝,如果最大的长度还是比答案小,就跳过
                continue;
            //还有按照启发式枚举的方式枚举
            bool inside = true;
            db len = 0;
            for (int k = s; k < t; k++) {
                int v = contain(p, (q[k] + q[k + 1]) / 2);
                if (v == 0) {
                    inside = false;
                    break;
                } else {
                    len += q[k].distTo(q[k + 1]);
                }
            }
            if (!inside)
                continue;
            for (int k = s; k > 0; k--) {
                int v = contain(p, (q[k] + q[k - 1]) / 2);
                if (v == 0) {
                    break;
                } else {
                    len += q[k].distTo(q[k - 1]);
                }
            }
            for (int k = t; k + 1 < m; k++) {
                int v = contain(p, (q[k] + q[k + 1]) / 2);
                if (v == 0) {
                    break;
                } else {
                    len += q[k].distTo(q[k + 1]);
                }
            }
            ans = max(ans, len);
        }
    cout << fixed << setprecision(10) << ans << endl;
}

A_Colourful_Prospect

题意:至多三个圆,求这些圆将平面划分为了几个区域

做法:首先可能能分类讨论,但是两个圆的情况已经很多了,三个圆想都不敢想。

所以就有一个公式:欧拉公式: V − E + R = 2 , V 是交点个数, E 是边数, R 是被分割的平面数 V-E+R=2,V是交点个数,E是边数,R是被分割的平面数 VE+R=2,V是交点个数,E是边数,R是被分割的平面数

但是这道题比较特殊,可以有不连通的圆,所以公式改一下: V − E + R = C + 1 V−E+R=C+1 VE+R=C+1,C是连通块个数

于是求连通块数量可以用并查集计算,交点个数用圆与圆交计算,然后去个重,边数就统计每个圆上的交点个数,累加即可。

/*
coder:sunshine
school:njupt
*/
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'  //交互题删掉
#define x first
#define y second
typedef long long ll;
typedef pair<int, int> pii;
constexpr int mod = 1e9 + 7;

typedef double db;
#define rep(i, a, n) for (int i = a; i < n; i++)
const db EPS = 1e-9;

inline int sign(db a) {
    return a < -EPS ? -1 : a > EPS;
}

inline int cmp(db a, db b) {
    return sign(a - b);
}

struct P {
    db x, y;
    P() {}
    P(db _x, db _y) : x(_x), y(_y) {}
    P operator+(P p) { return {x + p.x, y + p.y}; }
    P operator-(P p) { return {x - p.x, y - p.y}; }
    P operator*(db d) { return {x * d, y * d}; }
    P operator/(db d) { return {x / d, y / d}; }

    bool operator<(P p) const {
        int c = cmp(y, p.y);
        if (c)
            return c == -1;
        return cmp(x, p.x) == -1;
    }

    bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; }

    db dot(P p) { return x * p.x + y * p.y; }
    db det(P p) { return x * p.y - y * p.x; }

    db distTo(P p) { return (*this - p).abs(); }
    db alpha() { return atan2(y, x); }
    void read() {
        int x_, y_;
        scanf("%d%d", &x_, &y_);
        x = x_, y = y_;
    }

    void write() { cout << "(" << x << "," << y << ")" << endl; }
    db abs() { return sqrt(abs2()); }
    db abs2() { return x * x + y * y; }
    P rot90() { return P(-y, x); }
    P unit() { return *this / abs(); }
    int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
    P rot(db an) {
        return {x * cos(an) - y * sin(an), x * sin(an) + y * cos(an)};
    }
};

#define cross(p1, p2, p3) \
    ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y))
#define crossOp(p1, p2, p3) sign(cross(p1, p2, p3))

// 直线 p1p2, q1q2 是否恰有一个交点
bool chkLL(P p1, P p2, P q1, P q2) {
    db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    return sign(a1 + a2) != 0;
}

// 求直线 p1p2, q1q2 的交点
P isLL(P p1, P p2, P q1, P q2) {
    db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    return (p1 * a2 + p2 * a1) / (a1 + a2);
}

// 判断区间 [l1, r1], [l2, r2] 是否相交
bool intersect(db l1, db r1, db l2, db r2) {
    if (l1 > r1)
        swap(l1, r1);
    if (l2 > r2)
        swap(l2, r2);
    return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1);
}

// 线段 p1p2, q1q2 相交
bool isSS(P p1, P p2, P q1, P q2) {
    return intersect(p1.x, p2.x, q1.x, q2.x) &&
           intersect(p1.y, p2.y, q1.y, q2.y) &&
           crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0;
}

// 线段 p1p2, q1q2 严格相交
bool isSS_strict(P p1, P p2, P q1, P q2) {
    return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0;
}

// m 在 a 和 b 之间
bool isMiddle(db a, db m, db b) {
    /*if (a > b) swap(a, b);
    return cmp(a, m) <= 0 && cmp(m, b) <= 0;*/
    return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}

bool isMiddle(P a, P m, P b) {
    return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}

// 点 p 在线段 p1p2 上
bool onSeg(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
}
// q1q2 和 p1p2 的交点 在 p1p2 上?

// 点 p 严格在 p1p2 上
bool onSeg_strict(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 &&
           sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
}

// 求 q 到 直线p1p2 的投影(垂足) ⚠️ : p1 != p2
P proj(P p1, P p2, P q) {
    P dir = p2 - p1;
    return p1 + dir * (dir.dot(q - p1) / dir.abs2());
}

// 求 q 以 直线p1p2 为轴的反射
P reflect(P p1, P p2, P q) {
    return proj(p1, p2, q) * 2 - q;
}

// 求 q 到 线段p1p2 的最小距离
db nearest(P p1, P p2, P q) {
    if (p1 == p2)
        return p1.distTo(q);
    P h = proj(p1, p2, q);
    if (isMiddle(p1, h, p2))
        return q.distTo(h);
    return min(p1.distTo(q), p2.distTo(q));
}

// 求 线段p1p2 与 线段q1q2 的距离
db disSS(P p1, P p2, P q1, P q2) {
    if (isSS(p1, p2, q1, q2))
        return 0;
    return min(min(nearest(p1, p2, q1), nearest(p1, p2, q2)),
               min(nearest(q1, q2, p1), nearest(q1, q2, p2)));
}

db area(vector<P> ps) {
    db ret = 0;
    rep(i, 0, ps.size()) ret += ps[i].det(ps[(i + 1) % ps.size()]);
    return ret / 2;
}

int contain(vector<P> ps, P p) {  // 2:inside,1:on_seg,0:outside
    int n = ps.size(), ret = 0;
    rep(i, 0, n) {
        P u = ps[i], v = ps[(i + 1) % n];
        if (onSeg(u, v, p))
            return 1;
        if (cmp(u.y, v.y) <= 0)
            swap(u, v);
        if (cmp(p.y, u.y) > 0 || cmp(p.y, v.y) <= 0)
            continue;
        ret ^= crossOp(p, u, v) > 0;
    }
    return ret * 2;
}

vector<P> convexHull(vector<P> ps) {
    int n = ps.size();
    if (n <= 1)
        return ps;
    sort(ps.begin(), ps.end());
    vector<P> qs(n * 2);
    int k = 0;
    for (int i = 0; i < n; qs[k++] = ps[i++])
        while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0)
            --k;
    for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
        while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0)
            --k;
    qs.resize(k - 1);
    return qs;
}

vector<P> convexHullNonStrict(vector<P> ps) {
    // caution: need to unique the Ps first
    int n = ps.size();
    if (n <= 1)
        return ps;
    sort(ps.begin(), ps.end());
    vector<P> qs(n * 2);
    int k = 0;
    for (int i = 0; i < n; qs[k++] = ps[i++])
        while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0)
            --k;
    for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
        while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0)
            --k;
    qs.resize(k - 1);
    return qs;
}

db convexDiameter(vector<P> ps) {
    int n = ps.size();
    if (n <= 1)
        return 0;
    int is = 0, js = 0;
    rep(k, 1, n) is = ps[k] < ps[is] ? k : is, js = ps[js] < ps[k] ? k : js;
    int i = is, j = js;
    db ret = ps[i].distTo(ps[j]);
    do {
        if ((ps[(i + 1) % n] - ps[i]).det(ps[(j + 1) % n] - ps[j]) >= 0)
            (++j) %= n;
        else
            (++i) %= n;
        ret = max(ret, ps[i].distTo(ps[j]));
    } while (i != is || j != js);
    return ret;
}

vector<P> convexCut(const vector<P>& ps, P q1, P q2) {
    vector<P> qs;
    int n = ps.size();
    rep(i, 0, n) {
        P p1 = ps[i], p2 = ps[(i + 1) % n];
        int d1 = crossOp(q1, q2, p1), d2 = crossOp(q1, q2, p2);
        if (d1 >= 0)
            qs.push_back(p1);
        if (d1 * d2 < 0)
            qs.push_back(isLL(p1, p2, q1, q2));
    }
    return qs;
}

int type(P o1, db r1, P o2, db r2) {
    db d = o1.distTo(o2);
    if (cmp(d, r1 + r2) == 1)
        return 4;
    if (cmp(d, r1 + r2) == 0)
        return 3;
    if (cmp(d, abs(r1 - r2)) == 1)
        return 2;
    if (cmp(d, abs(r1 - r2)) == 0)
        return 1;
    return 0;
}

vector<P> isCL(P o, db r, P p1, P p2) {
    if (cmp(abs((o - p1).det(p2 - p1) / p1.distTo(p2)), r) > 0)
        return {};
    db x = (p1 - o).dot(p2 - p1), y = (p2 - p1).abs2(),
       d = x * x - y * ((p1 - o).abs2() - r * r);
    d = max(d, (db)0.0);
    P m = p1 - (p2 - p1) * (x / y), dr = (p2 - p1) * (sqrt(d) / y);
    return {m - dr, m + dr};  // along dir: p1->p2
}

vector<P> isCC(P o1,
               db r1,
               P o2,
               db r2) {  // need to check whether two circles are the same
    db d = o1.distTo(o2);
    if (cmp(d, r1 + r2) == 1)
        return {};
    if (cmp(d, abs(r1 - r2)) == -1)
        return {};
    d = min(d, r1 + r2);
    db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y);
    P dr = (o2 - o1).unit();
    P q1 = o1 + dr * y, q2 = dr.rot90() * x;
    return {q1 - q2, q1 + q2};  // along circle 1
}

// extanCC, intanCC : -r2, tanCP : r2 = 0
vector<pair<P, P>> tanCC(P o1, db r1, P o2, db r2) {
    P d = o2 - o1;
    db dr = r1 - r2, d2 = d.abs2(), h2 = d2 - dr * dr;
    if (sign(d2) == 0 || sign(h2) < 0)
        return {};
    h2 = max(0.0, h2);
    vector<pair<P, P>> ret;
    for (db sign : {-1, 1}) {
        P v = (d * dr + d.rot90() * sqrt(h2) * sign) / d2;
        ret.push_back({o1 + v * r1, o2 + v * r2});
    }
    if (sign(h2) == 0)
        ret.pop_back();
    return ret;
}

db rad(P p1, P p2) {
    return atan2l(p1.det(p2), p1.dot(p2));
}

db areaCT(db r, P p1, P p2) {
    vector<P> is = isCL(P(0, 0), r, p1, p2);
    if (is.empty())
        return r * r * rad(p1, p2) / 2;
    bool b1 = cmp(p1.abs2(), r * r) == 1, b2 = cmp(p2.abs2(), r * r) == 1;
    if (b1 && b2) {
        if (sign((p1 - is[0]).dot(p2 - is[0])) <= 0 &&
            sign((p1 - is[1]).dot(p2 - is[1])) <= 0)
            return r * r * (rad(p1, is[0]) + rad(is[1], p2)) / 2 +
                   is[0].det(is[1]) / 2;
        else
            return r * r * rad(p1, p2) / 2;
    }
    if (b1)
        return (r * r * rad(p1, is[0]) + is[0].det(p2)) / 2;
    if (b2)
        return (p1.det(is[1]) + r * r * rad(is[1], p2)) / 2;
    return p1.det(p2) / 2;
}

P inCenter(P A, P B, P C) {
    double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();
    return (A * a + B * b + C * c) / (a + b + c);
}

P circumCenter(P a, P b, P c) {
    P bb = b - a, cc = c - a;
    double db = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc);
    return a - P(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d;
}

P othroCenter(P a, P b, P c) {
    P ba = b - a, ca = c - a, bc = b - c;
    double Y = ba.y * ca.y * bc.y, A = ca.x * ba.y - ba.x * ca.y,
           x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
           y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
    return {x0, y0};
}

pair<P, db> min_circle(vector<P> ps) {
    random_device rd;
    mt19937 rng(rd());
    shuffle(ps.begin(), ps.end(), rng);
    // random_shuffle(ps.begin(), ps.end());
    int n = ps.size();
    P o = ps[0];
    db r = 0;
    rep(i, 1, n) if (o.distTo(ps[i]) > r + EPS) {
        o = ps[i], r = 0;
        rep(j, 0, i) if (o.distTo(ps[j]) > r + EPS) {
            o = (ps[i] + ps[j]) / 2;
            r = o.distTo(ps[i]);
            rep(k, 0, j) if (o.distTo(ps[k]) > r + EPS) {
                o = circumCenter(ps[i], ps[j], ps[k]);
                r = o.distTo(ps[i]);
            }
        }
    }
    return {o, r};
}
int n, r[10], f[10];
P o[10];
void solve() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        int x, y, r_;
        cin >> x >> y >> r_;
        o[i] = P(x, y);
        r[i] = r_;
    }
    vector<P> pt;
    vector<vector<P>> pts(n);
    for (int i = 0; i < n; i++) {
        pts[i].clear();
        for (int j = 0; j < n; j++) {
            if (i != j) {
                auto ps = isCC(o[i], r[i], o[j], r[j]);
                for (auto p : ps) {
                    pts[i].push_back(p);
                    pt.push_back(p);
                }
            }
        }
        if (pts[i].empty()) {
            P p = o[i] - P(r[i], 0);
            pts[i].push_back(p);
            pt.push_back(p);
        }
        //去重
        sort(pts[i].begin(), pts[i].end());
        pts[i].erase(unique(pts[i].begin(), pts[i].end()), pts[i].end());
    }
    //去重
    sort(pt.begin(), pt.end());
    pt.erase(unique(pt.begin(), pt.end()), pt.end());
    int V = pt.size();
    int E = 0, C = V;
    //并查集
    for (int i = 1; i <= V; i++)
        f[i] = i;
    function<int(int)> find = [&](int x) {
        if (x != f[x])
            f[x] = find(f[x]);
        return f[x];
    };
    for (int i = 0; i < n; i++) {
        E += pts[i].size();
        int x = lower_bound(pt.begin(), pt.end(), pts[i][0]) - pt.begin() + 1;
        for (auto p : pts[i]) {
            int y = lower_bound(pt.begin(), pt.end(), p) - pt.begin() + 1;
            if (find(x) != find(y)) {
                C--;
                f[find(x)] = find(y);
            }
        }
    }
    int F = E + C + 1 - V;
    cout << F << endl;
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
    return 0;
}

板子

dls 的板子

点线:

#include <bits/stdc++.h>
using namespace std;

typedef double db;
const db EPS = 1e-9;

inline int sign(db a) {
    return a < -EPS ? -1 : a > EPS;
}

inline int cmp(db a, db b) {
    return sign(a - b);
}

struct P {
    db x, y;
    P() {}
    P(db _x, db _y) : x(_x), y(_y) {}
    //重构加减乘除
    P operator+(P p) { return {x + p.x, y + p.y}; }
    P operator-(P p) { return {x - p.x, y - p.y}; }
    P operator*(db d) { return {x * d, y * d}; }
    P operator/(db d) { return {x / d, y / d}; }

    bool operator<(P p) const {
        int c = cmp(x, p.x);
        if (c)
            return c == -1;
        return cmp(y, p.y) == -1;
    }

    bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; }

    db dot(P p) { return x * p.x + y * p.y; }  //点积
    db det(P p) { return x * p.y - y * p.x; }  //叉积

    db distTo(P p) { return (*this - p).abs(); }
    db alpha() { return atan2(y, x); }
    void read() { cin >> x >> y; }
    void write() { cout << "(" << x << "," << y << ")" << endl; }
    db abs() { return sqrt(abs2()); }
    db abs2() { return x * x + y * y; }
    P rot90() { return P(-y, x); }
    P unit() { return *this / abs(); }
    int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
    P rot(db an) {
        return {x * cos(an) - y * sin(an), x * sin(an) + y * cos(an)};
    }
};

#define cross(p1, p2, p3) \
    ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y))
#define crossOp(p1, p2, p3) sign(cross(p1, p2, p3))

// 直线 p1p2, q1q2 是否恰有一个交点
bool chkLL(P p1, P p2, P q1, P q2) {
    db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    return sign(a1 + a2) != 0;
}

// 求直线 p1p2, q1q2 的交点
P isLL(P p1, P p2, P q1, P q2) {
    db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    return (p1 * a2 + p2 * a1) / (a1 + a2);
}

// 判断区间 [l1, r1], [l2, r2] 是否相交
bool intersect(db l1, db r1, db l2, db r2) {
    if (l1 > r1)
        swap(l1, r1);
    if (l2 > r2)
        swap(l2, r2);
    return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1);
}

// 线段 p1p2, q1q2 相交
bool isSS(P p1, P p2, P q1, P q2) {
    return intersect(p1.x, p2.x, q1.x, q2.x) &&
           intersect(p1.y, p2.y, q1.y, q2.y) &&
           crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0;
}

// 线段 p1p2, q1q2 严格相交
bool isSS_strict(P p1, P p2, P q1, P q2) {
    return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 &&
           crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0;
}

// m 在 a 和 b 之间
bool isMiddle(db a, db m, db b) {
    /*if (a > b) swap(a, b);
    return cmp(a, m) <= 0 && cmp(m, b) <= 0;*/
    return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}

bool isMiddle(P a, P m, P b) {
    return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}

// 点 p 在线段 p1p2 上
bool onSeg(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
}
// q1q2 和 p1p2 的交点 在 p1p2 上?

// 点 p 严格在 p1p2 上
bool onSeg_strict(P p1, P p2, P q) {
    return crossOp(p1, p2, q) == 0 &&
           sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
}

// 求 q 到 直线p1p2 的投影(垂足) ⚠️ : p1 != p2
P proj(P p1, P p2, P q) {
    P dir = p2 - p1;
    return p1 + dir * (dir.dot(q - p1) / dir.abs2());
}

// 求 q 以 直线p1p2 为轴的反射
P reflect(P p1, P p2, P q) {
    return proj(p1, p2, q) * 2 - q;
}

// 求 q 到 线段p1p2 的最小距离
db nearest(P p1, P p2, P q) {
    if (p1 == p2)
        return p1.distTo(q);
    P h = proj(p1, p2, q);
    if (isMiddle(p1, h, p2))
        return q.distTo(h);
    return min(p1.distTo(q), p2.distTo(q));
}

// 求 线段p1p2 与 线段q1q2 的距离
db disSS(P p1, P p2, P q1, P q2) {
    if (isSS(p1, p2, q1, q2))
        return 0;
    return min(min(nearest(p1, p2, q1), nearest(p1, p2, q2)),
               min(nearest(q1, q2, p1), nearest(q1, q2, p2)));
}

// 极角排序

sort(p, p + n, [&](P a, P b) {
    int qa = a.quad(), qb = b.quad();
    if (qa != qb)
        return qa < qb;
    else
        return sign(a.det(b)) > 0;
});

多边形

#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, n) for (int i = a; i < n; i++)
typedef double db;
const db EPS = 1e-9;

//求多边形面积
db area(vector<P> ps) {
    db ret = 0;
    rep(i, 0, ps.size()) ret += ps[i].det(ps[(i + 1) % ps.size()]);
    return ret / 2;
}
//点包含
int contain(vector<P> ps, P p) {  // 2:inside,1:on_seg,0:outside
    int n = ps.size(), ret = 0;
    rep(i, 0, n) {
        P u = ps[i], v = ps[(i + 1) % n];
        if (onSeg(u, v, p))
            return 1;
        if (cmp(u.y, v.y) <= 0)
            swap(u, v);
        if (cmp(p.y, u.y) > 0 || cmp(p.y, v.y) <= 0)
            continue;
        ret ^= crossOp(p, u, v) > 0;
    }
    return ret * 2;
}
//严格凸包
vector<P> convexHull(vector<P> ps) {
    int n = ps.size();
    if (n <= 1)
        return ps;
    sort(ps.begin(), ps.end());
    vector<P> qs(n * 2);
    int k = 0;
    for (int i = 0; i < n; qs[k++] = ps[i++])
        while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0)
            --k;
    for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
        while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0)
            --k;
    qs.resize(k - 1);
    return qs;
}

//不严格凸包
vector<P> convexHullNonStrict(vector<P> ps) {
    // caution: need to unique the Ps first
    int n = ps.size();
    if (n <= 1)
        return ps;
    sort(ps.begin(), ps.end());
    vector<P> qs(n * 2);
    int k = 0;
    for (int i = 0; i < n; qs[k++] = ps[i++])
        while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0)
            --k;
    for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
        while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0)
            --k;
    qs.resize(k - 1);
    return qs;
}
//旋转卡壳
db convexDiameter(vector<P> ps) {
    int n = ps.size();
    if (n <= 1)
        return 0;
    int is = 0, js = 0;
    rep(k, 1, n) is = ps[k] < ps[is] ? k : is, js = ps[js] < ps[k] ? k : js;
    int i = is, j = js;
    db ret = ps[i].distTo(ps[j]);
    do {
        if ((ps[(i + 1) % n] - ps[i]).det(ps[(j + 1) % n] - ps[j]) >= 0)
            (++j) %= n;
        else
            (++i) %= n;
        ret = max(ret, ps[i].distTo(ps[j]));
    } while (i != is || j != js);
    return ret;
}

//切多边形
vector<P> convexCut(const vector<P>& ps, P q1, P q2) {
    vector<P> qs;
    int n = ps.size();
    rep(i, 0, n) {
        P p1 = ps[i], p2 = ps[(i + 1) % n];
        int d1 = crossOp(q1, q2, p1), d2 = crossOp(q1, q2, p2);
        if (d1 >= 0)
            qs.push_back(p1);
        if (d1 * d2 < 0)
            qs.push_back(isLL(p1, p2, q1, q2));
    }
    return qs;
}

#define rep(i, a, n) for (int i = a; i < n; i++)
const double PI = acos(-1.0);

//判断两个圆的关系
int type(P o1, db r1, P o2, db r2) {
    db d = o1.distTo(o2);
    if (cmp(d, r1 + r2) == 1)
        return 4;
    if (cmp(d, r1 + r2) == 0)
        return 3;
    if (cmp(d, abs(r1 - r2)) == 1)
        return 2;
    if (cmp(d, abs(r1 - r2)) == 0)
        return 1;
    return 0;
}
//圆和线相交
vector<P> isCL(P o, db r, P p1, P p2) {
    if (cmp(abs((o - p1).det(p2 - p1) / p1.distTo(p2)), r) > 0)
        return {};
    db x = (p1 - o).dot(p2 - p1), y = (p2 - p1).abs2(),
       d = x * x - y * ((p1 - o).abs2() - r * r);
    d = max(d, (db)0.0);
    P m = p1 - (p2 - p1) * (x / y), dr = (p2 - p1) * (sqrt(d) / y);
    return {m - dr, m + dr};  // along dir: p1->p2
}

//两个圆相交的交点
vector<P> isCC(P o1,
               db r1,
               P o2,
               db r2) {  // need to check whether two circles are the same
    db d = o1.distTo(o2);
    if (cmp(d, r1 + r2) == 1)
        return {};
    if (cmp(d, abs(r1 - r2)) == -1)
        return {};
    d = min(d, r1 + r2);
    db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y);
    P dr = (o2 - o1).unit();
    P q1 = o1 + dr * y, q2 = dr.rot90() * x;
    return {q1 - q2, q1 + q2};  // along circle 1
}

//求切线,默认求外公切线,求内公切线的话,r2改成负数,求点到圆的切线,r2改成0
// extanCC, intanCC : -r2, tanCP : r2 = 0
vector<pair<P, P>> tanCC(P o1, db r1, P o2, db r2) {
    P d = o2 - o1;
    db dr = r1 - r2, d2 = d.abs2(), h2 = d2 - dr * dr;
    if (sign(d2) == 0 || sign(h2) < 0)
        return {};
    h2 = max((db)0.0, h2);
    vector<pair<P, P>> ret;
    for (db sign : {-1, 1}) {
        P v = (d * dr + d.rot90() * sqrt(h2) * sign) / d2;
        ret.push_back({o1 + v * r1, o2 + v * r2});
    }
    if (sign(h2) == 0)
        ret.pop_back();
    return ret;
}

db rad(P p1, P p2) {
    return atan2l(p1.det(p2), p1.dot(p2));
}
//圆和三角形的面积交
db areaCT(db r, P p1, P p2) {
    vector<P> is = isCL(P(0, 0), r, p1, p2);
    if (is.empty())
        return r * r * rad(p1, p2) / 2;
    bool b1 = cmp(p1.abs2(), r * r) == 1, b2 = cmp(p2.abs2(), r * r) == 1;
    if (b1 && b2) {
        P md = (is[0] + is[1]) / 2;
        if (sign((p1 - md).dot(p2 - md)) <= 0)
            return r * r * (rad(p1, is[0]) + rad(is[1], p2)) / 2 +
                   is[0].det(is[1]) / 2;
        else
            return r * r * rad(p1, p2) / 2;
    }
    if (b1)
        return (r * r * rad(p1, is[0]) + is[0].det(p2)) / 2;
    if (b2)
        return (p1.det(is[1]) + r * r * rad(is[1], p2)) / 2;
    return p1.det(p2) / 2;
}

//内心
P inCenter(P A, P B, P C) {
    double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();
    return (A * a + B * b + C * c) / (a + b + c);
}
//外心
P circumCenter(P a, P b, P c) {
    P bb = b - a, cc = c - a;
    double db = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc);
    return a - P(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d;
}
//垂心
P othroCenter(P a, P b, P c) {
    P ba = b - a, ca = c - a, bc = b - c;
    double Y = ba.y * ca.y * bc.y, A = ca.x * ba.y - ba.x * ca.y,
           x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
           y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
    return {x0, y0};
}

//最小圆覆盖,随机增量法
pair<P, db> min_circle(vector<P> ps) {
    random_device rd;
    mt19937 rng(rd());
    shuffle(ps.begin(), ps.end(), rng);
    // random_shuffle(ps.begin(), ps.end());
    int n = ps.size();
    P o = ps[0];
    db r = 0;
    rep(i, 1, n) if (o.distTo(ps[i]) > r + EPS) {
        o = ps[i], r = 0;
        rep(j, 0, i) if (o.distTo(ps[j]) > r + EPS) {
            o = (ps[i] + ps[j]) / 2;
            r = o.distTo(ps[i]);
            rep(k, 0, j) if (o.distTo(ps[k]) > r + EPS) {
                o = circumCenter(ps[i], ps[j], ps[k]);
                r = o.distTo(ps[i]);
            }
        }
    }
    return {o, r};
}

db intergal(db x, db y, db r, db L, db R) {
    return r * r * (R - L) + x * r * (sinl(R) - sinl(L)) +
           y * r * (-cosl(R) + cosl(L));
}

db calc_area_circle(P c, db r, db L, db R) {
    return intergal(c.x, c.y, r, L, R) / 2;
}

db norm(db x) {
    while (x < 0)
        x += 2 * PI;
    while (x > 2 * PI)
        x -= 2 * PI;
    return x;
}



//圆面积并
P cs[N];
db rs[N];

void work() {
    vector<int> cand = {};
    rep(i, 0, n) {
        bool ok = 1;
        rep(j, 0, n) if (i != j) {
            if (rs[j] > rs[i] + EPS &&
                rs[i] + cs[i].distTo(cs[j]) <= rs[j] + EPS) {
                ok = 0;
                break;
            }
            if (cs[i] == cs[j] && cmp(rs[i], rs[j]) == 0 && j < i) {
                ok = 0;
                break;
            }
        }
        if (ok)
            cand.push_back(i);
    }

    rep(i, 0, cand.size()) cs[i] = cs[cand[i]], rs[i] = rs[cand[i]];
    n = cand.size();

    db area = 0;

    // work
    rep(i, 0, n) {
        vector<pair<db, int>> ev = {{0, 0}, {2 * PI, 0}};

        int cur = 0;

        rep(j, 0, n) if (j != i) {
            auto ret = isCC(cs[i], rs[i], cs[j], rs[j]);
            if (!ret.empty()) {
                db l = (ret[0] - cs[i]).alpha();
                db r = (ret[1] - cs[i]).alpha();
                l = norm(l);
                r = norm(r);
                ev.push_back({l, 1});
                ev.push_back({r, -1});
                if (l > r)
                    ++cur;
            }
        }

        sort(ev.begin(), ev.end());
        rep(j, 0, ev.size() - 1) {
            cur += ev[j].se;
            if (cur == 0) {
                area += calc_area_circle(cs[i], rs[i], ev[j].fi, ev[j + 1].fi);
            }
        }
    }
}

牛客

比较全,按需自取

#include <bits/stdc++.h>
using namespace std;

using point_t = long double;  //全局数据类型,可修改为 long long 等

constexpr point_t eps = 1e-8;
constexpr long double PI = 3.1415926535897932384l;

// 点与向量
template <typename T>
struct point {
    T x, y;

    bool operator==(const point& a) const {
        return (abs(x - a.x) <= eps && abs(y - a.y) <= eps);
    }
    bool operator<(const point& a) const {
        if (abs(x - a.x) <= eps)
            return y < a.y - eps;
        return x < a.x - eps;
    }
    bool operator>(const point& a) const { return !(*this < a || *this == a); }
    point operator+(const point& a) const { return {x + a.x, y + a.y}; }
    point operator-(const point& a) const { return {x - a.x, y - a.y}; }
    point operator-() const { return {-x, -y}; }
    point operator*(const T k) const { return {k * x, k * y}; }
    point operator/(const T k) const { return {x / k, y / k}; }
    T operator*(const point& a) const { return x * a.x + y * a.y; }  // 点积
    T operator^(const point& a) const {
        return x * a.y - y * a.x;
    }  // 叉积,注意优先级
    int toleft(const point& a) const {
        const auto t = (*this) ^ a;
        return (t > eps) - (t < -eps);
    }                                             // to-left 测试
    T len2() const { return (*this) * (*this); }  // 向量长度的平方
    T dis2(const point& a) const {
        return (a - (*this)).len2();
    }  // 两点距离的平方

    // 涉及浮点数
    long double len() const { return sqrtl(len2()); }  // 向量长度
    long double dis(const point& a) const {
        return sqrtl(dis2(a));
    }  // 两点距离
    long double ang(const point& a) const {
        return acosl(max(-1.0l, min(1.0l, ((*this) * a) / (len() * a.len()))));
    }  // 向量夹角
    point rot(const long double rad) const {
        return {x * cos(rad) - y * sin(rad), x * sin(rad) + y * cos(rad)};
    }  // 逆时针旋转(给定角度)
    point rot(const long double cosr, const long double sinr) const {
        return {x * cosr - y * sinr, x * sinr + y * cosr};
    }  // 逆时针旋转(给定角度的正弦与余弦)
};

using Point = point<point_t>;

// 极角排序
struct argcmp {
    bool operator()(const Point& a, const Point& b) const {
        const auto quad = [](const Point& a) {
            if (a.y < -eps)
                return 1;
            if (a.y > eps)
                return 4;
            if (a.x < -eps)
                return 5;
            if (a.x > eps)
                return 3;
            return 2;
        };
        const int qa = quad(a), qb = quad(b);
        if (qa != qb)
            return qa < qb;
        const auto t = a ^ b;
        // if (abs(t)<=eps) return a*a<b*b-eps;  // 不同长度的向量需要分开
        return t > eps;
    }
};

// 直线
template <typename T>
struct line {
    point<T> p, v;  // p 为直线上一点,v 为方向向量

    bool operator==(const line& a) const {
        return v.toleft(a.v) == 0 && v.toleft(p - a.p) == 0;
    }
    int toleft(const point<T>& a) const {
        return v.toleft(a - p);
    }                                    // to-left 测试
    bool operator<(const line& a) const  // 半平面交算法定义的排序
    {
        if (abs(v ^ a.v) <= eps && v * a.v >= -eps)
            return toleft(a.p) == -1;
        return argcmp()(v, a.v);
    }

    // 涉及浮点数
    point<T> inter(const line& a) const {
        return p + v * ((a.v ^ (p - a.p)) / (v ^ a.v));
    }  // 直线交点
    long double dis(const point<T>& a) const {
        return abs(v ^ (a - p)) / v.len();
    }  // 点到直线距离
    point<T> proj(const point<T>& a) const {
        return p + v * ((v * (a - p)) / (v * v));
    }  // 点在直线上的投影
};

using Line = line<point_t>;

//线段
template <typename T>
struct segment {
    point<T> a, b;

    bool operator<(const segment& s) const {
        return make_pair(a, b) < make_pair(s.a, s.b);
    }

    // 判定性函数建议在整数域使用

    // 判断点是否在线段上
    // -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上
    int is_on(const point<T>& p) const {
        if (p == a || p == b)
            return -1;
        return (p - a).toleft(p - b) == 0 && (p - a) * (p - b) < -eps;
    }

    // 判断线段直线是否相交
    // -1 直线经过线段端点 | 0 线段和直线不相交 | 1 线段和直线严格相交
    int is_inter(const line<T>& l) const {
        if (l.toleft(a) == 0 || l.toleft(b) == 0)
            return -1;
        return l.toleft(a) != l.toleft(b);
    }

    // 判断两线段是否相交
    // -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交
    int is_inter(const segment<T>& s) const {
        if (is_on(s.a) || is_on(s.b) || s.is_on(a) || s.is_on(b))
            return -1;
        const line<T> l{a, b - a}, ls{s.a, s.b - s.a};
        return l.toleft(s.a) * l.toleft(s.b) == -1 &&
               ls.toleft(a) * ls.toleft(b) == -1;
    }

    // 点到线段距离
    long double dis(const point<T>& p) const {
        if ((p - a) * (b - a) < -eps || (p - b) * (a - b) < -eps)
            return min(p.dis(a), p.dis(b));
        const line<T> l{a, b - a};
        return l.dis(p);
    }

    // 两线段间距离
    long double dis(const segment<T>& s) const {
        if (is_inter(s))
            return 0;
        return min({dis(s.a), dis(s.b), s.dis(a), s.dis(b)});
    }
};

using Segment = segment<point_t>;

// 多边形
template <typename T>
struct polygon {
    vector<point<T>> p;  // 以逆时针顺序存储

    size_t nxt(const size_t i) const { return i == p.size() - 1 ? 0 : i + 1; }
    size_t pre(const size_t i) const { return i == 0 ? p.size() - 1 : i - 1; }

    // 回转数
    // 返回值第一项表示点是否在多边形边上
    // 对于狭义多边形,回转数为 0 表示点在多边形外,否则点在多边形内
    pair<bool, int> winding(const point<T>& a) const {
        int cnt = 0;
        for (size_t i = 0; i < p.size(); i++) {
            const point<T> u = p[i], v = p[nxt(i)];
            if (abs((a - u) ^ (a - v)) <= eps && (a - u) * (a - v) <= eps)
                return {true, 0};
            if (abs(u.y - v.y) <= eps)
                continue;
            const Line uv = {u, v - u};
            if (u.y < v.y - eps && uv.toleft(a) <= 0)
                continue;
            if (u.y > v.y + eps && uv.toleft(a) >= 0)
                continue;
            if (u.y < a.y - eps && v.y >= a.y - eps)
                cnt++;
            if (u.y >= a.y - eps && v.y < a.y - eps)
                cnt--;
        }
        return {false, cnt};
    }

    // 多边形面积的两倍
    // 可用于判断点的存储顺序是顺时针或逆时针
    T area() const {
        T sum = 0;
        for (size_t i = 0; i < p.size(); i++)
            sum += p[i] ^ p[nxt(i)];
        return sum;
    }

    // 多边形的周长
    long double circ() const {
        long double sum = 0;
        for (size_t i = 0; i < p.size(); i++)
            sum += p[i].dis(p[nxt(i)]);
        return sum;
    }
};

using Polygon = polygon<point_t>;

//凸多边形
template <typename T>
struct convex : polygon<T> {
    // 闵可夫斯基和
    convex operator+(const convex& c) const {
        const auto& p = this->p;
        vector<Segment> e1(p.size()), e2(c.p.size()),
            edge(p.size() + c.p.size());
        vector<point<T>> res;
        res.reserve(p.size() + c.p.size());
        const auto cmp = [](const Segment& u, const Segment& v) {
            return argcmp()(u.b - u.a, v.b - v.a);
        };
        for (size_t i = 0; i < p.size(); i++)
            e1[i] = {p[i], p[this->nxt(i)]};
        for (size_t i = 0; i < c.p.size(); i++)
            e2[i] = {c.p[i], c.p[c.nxt(i)]};
        rotate(e1.begin(), min_element(e1.begin(), e1.end(), cmp), e1.end());
        rotate(e2.begin(), min_element(e2.begin(), e2.end(), cmp), e2.end());
        merge(e1.begin(), e1.end(), e2.begin(), e2.end(), edge.begin(), cmp);
        const auto check = [](const vector<point<T>>& res, const point<T>& u) {
            const auto back1 = res.back(), back2 = *prev(res.end(), 2);
            return (back1 - back2).toleft(u - back1) == 0 &&
                   (back1 - back2) * (u - back1) >= -eps;
        };
        auto u = e1[0].a + e2[0].a;
        for (const auto& v : edge) {
            while (res.size() > 1 && check(res, u))
                res.pop_back();
            res.push_back(u);
            u = u + v.b - v.a;
        }
        if (res.size() > 1 && check(res, res[0]))
            res.pop_back();
        return {res};
    }

    // 旋转卡壳
    // func 为更新答案的函数,可以根据题目调整位置
    template <typename F>
    void rotcaliper(const F& func) const {
        const auto& p = this->p;
        const auto area = [](const point<T>& u, const point<T>& v,
                             const point<T>& w) { return (w - u) ^ (w - v); };
        for (size_t i = 0, j = 1; i < p.size(); i++) {
            const auto nxti = this->nxt(i);
            func(p[i], p[nxti], p[j]);
            while (area(p[this->nxt(j)], p[i], p[nxti]) >=
                   area(p[j], p[i], p[nxti])) {
                j = this->nxt(j);
                func(p[i], p[nxti], p[j]);
            }
        }
    }

    // 凸多边形的直径的平方
    T diameter2() const {
        const auto& p = this->p;
        if (p.size() == 1)
            return 0;
        if (p.size() == 2)
            return p[0].dis2(p[1]);
        T ans = 0;
        auto func = [&](const point<T>& u, const point<T>& v,
                        const point<T>& w) {
            ans = max({ans, w.dis2(u), w.dis2(v)});
        };
        rotcaliper(func);
        return ans;
    }

    // 判断点是否在凸多边形内
    // 复杂度 O(logn)
    // -1 点在多边形边上 | 0 点在多边形外 | 1 点在多边形内
    int is_in(const point<T>& a) const {
        const auto& p = this->p;
        if (p.size() == 1)
            return a == p[0] ? -1 : 0;
        if (p.size() == 2)
            return segment<T>{p[0], p[1]}.is_on(a) ? -1 : 0;
        if (a == p[0])
            return -1;
        if ((p[1] - p[0]).toleft(a - p[0]) == -1 ||
            (p.back() - p[0]).toleft(a - p[0]) == 1)
            return 0;
        const auto cmp = [&](const Point& u, const Point& v) {
            return (u - p[0]).toleft(v - p[0]) == 1;
        };
        const size_t i =
            lower_bound(p.begin() + 1, p.end(), a, cmp) - p.begin();
        if (i == 1)
            return segment<T>{p[0], p[i]}.is_on(a) ? -1 : 0;
        if (i == p.size() - 1 && segment<T>{p[0], p[i]}.is_on(a))
            return -1;
        if (segment<T>{p[i - 1], p[i]}.is_on(a))
            return -1;
        return (p[i] - p[i - 1]).toleft(a - p[i - 1]) > 0;
    }

    // 凸多边形关于某一方向的极点
    // 复杂度 O(logn)
    // 参考资料:https://codeforces.com/blog/entry/48868
    template <typename F>
    size_t extreme(const F& dir) const {
        const auto& p = this->p;
        const auto check = [&](const size_t i) {
            return dir(p[i]).toleft(p[this->nxt(i)] - p[i]) >= 0;
        };
        const auto dir0 = dir(p[0]);
        const auto check0 = check(0);
        if (!check0 && check(p.size() - 1))
            return 0;
        const auto cmp = [&](const Point& v) {
            const size_t vi = &v - p.data();
            if (vi == 0)
                return 1;
            const auto checkv = check(vi);
            const auto t = dir0.toleft(v - p[0]);
            if (vi == 1 && checkv == check0 && t == 0)
                return 1;
            return checkv ^ (checkv == check0 && t <= 0);
        };
        return partition_point(p.begin(), p.end(), cmp) - p.begin();
    }

    // 过凸多边形外一点求凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    // 必须保证点在多边形外
    pair<size_t, size_t> tangent(const point<T>& a) const {
        const size_t i = extreme([&](const point<T>& u) { return u - a; });
        const size_t j = extreme([&](const point<T>& u) { return a - u; });
        return {i, j};
    }

    // 求平行于给定直线的凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    pair<size_t, size_t> tangent(const line<T>& a) const {
        const size_t i = extreme([&](...) { return a.v; });
        const size_t j = extreme([&](...) { return -a.v; });
        return {i, j};
    }
};

using Convex = convex<point_t>;

// 圆
struct Circle {
    Point c;
    long double r;

    bool operator==(const Circle& a) const {
        return c == a.c && abs(r - a.r) <= eps;
    }
    long double circ() const { return 2 * PI * r; }  // 周长
    long double area() const { return PI * r * r; }  // 面积

    // 点与圆的关系
    // -1 圆上 | 0 圆外 | 1 圆内
    int is_in(const Point& p) const {
        const long double d = p.dis(c);
        return abs(d - r) <= eps ? -1 : d < r - eps;
    }

    // 直线与圆关系
    // 0 相离 | 1 相切 | 2 相交
    int relation(const Line& l) const {
        const long double d = l.dis(c);
        if (d > r + eps)
            return 0;
        if (abs(d - r) <= eps)
            return 1;
        return 2;
    }

    // 圆与圆关系
    // -1 相同 | 0 相离 | 1 外切 | 2 相交 | 3 内切 | 4 内含
    int relation(const Circle& a) const {
        if (*this == a)
            return -1;
        const long double d = c.dis(a.c);
        if (d > r + a.r + eps)
            return 0;
        if (abs(d - r - a.r) <= eps)
            return 1;
        if (abs(d - abs(r - a.r)) <= eps)
            return 3;
        if (d < abs(r - a.r) - eps)
            return 4;
        return 2;
    }

    // 直线与圆的交点
    vector<Point> inter(const Line& l) const {
        const long double d = l.dis(c);
        const Point p = l.proj(c);
        const int t = relation(l);
        if (t == 0)
            return vector<Point>();
        if (t == 1)
            return vector<Point>{p};
        const long double k = sqrt(r * r - d * d);
        return vector<Point>{p - (l.v / l.v.len()) * k,
                             p + (l.v / l.v.len()) * k};
    }

    // 圆与圆交点
    vector<Point> inter(const Circle& a) const {
        const long double d = c.dis(a.c);
        const int t = relation(a);
        if (t == -1 || t == 0 || t == 4)
            return vector<Point>();
        Point e = a.c - c;
        e = e / e.len() * r;
        if (t == 1 || t == 3) {
            if (r * r + d * d - a.r * a.r >= -eps)
                return vector<Point>{c + e};
            return vector<Point>{c - e};
        }
        const long double costh = (r * r + d * d - a.r * a.r) / (2 * r * d),
                          sinth = sqrt(1 - costh * costh);
        return vector<Point>{c + e.rot(costh, -sinth), c + e.rot(costh, sinth)};
    }

    // 圆与圆交面积
    long double inter_area(const Circle& a) const {
        const long double d = c.dis(a.c);
        const int t = relation(a);
        if (t == -1)
            return area();
        if (t < 2)
            return 0;
        if (t > 2)
            return min(area(), a.area());
        const long double costh1 = (r * r + d * d - a.r * a.r) / (2 * r * d),
                          costh2 = (a.r * a.r + d * d - r * r) / (2 * a.r * d);
        const long double sinth1 = sqrt(1 - costh1 * costh1),
                          sinth2 = sqrt(1 - costh2 * costh2);
        const long double th1 = acos(costh1), th2 = acos(costh2);
        return r * r * (th1 - costh1 * sinth1) +
               a.r * a.r * (th2 - costh2 * sinth2);
    }

    // 过圆外一点圆的切线
    vector<Line> tangent(const Point& a) const {
        const int t = is_in(a);
        if (t == 1)
            return vector<Line>();
        if (t == -1) {
            const Point v = {-(a - c).y, (a - c).x};
            return vector<Line>{{a, v}};
        }
        Point e = a - c;
        e = e / e.len() * r;
        const long double costh = r / c.dis(a), sinth = sqrt(1 - costh * costh);
        const Point t1 = c + e.rot(costh, -sinth), t2 = c + e.rot(costh, sinth);
        return vector<Line>{{a, t1 - a}, {a, t2 - a}};
    }

    // 两圆的公切线
    vector<Line> tangent(const Circle& a) const {
        const int t = relation(a);
        vector<Line> lines;
        if (t == -1 || t == 4)
            return lines;
        if (t == 1 || t == 3) {
            const Point p = inter(a)[0], v = {-(a.c - c).y, (a.c - c).x};
            lines.push_back({p, v});
        }
        const long double d = c.dis(a.c);
        const Point e = (a.c - c) / (a.c - c).len();
        if (t <= 2) {
            const long double costh = (r - a.r) / d,
                              sinth = sqrt(1 - costh * costh);
            const Point d1 = e.rot(costh, -sinth), d2 = e.rot(costh, sinth);
            const Point u1 = c + d1 * r, u2 = c + d2 * r, v1 = a.c + d1 * a.r,
                        v2 = a.c + d2 * a.r;
            lines.push_back({u1, v1 - u1});
            lines.push_back({u2, v2 - u2});
        }
        if (t == 0) {
            const long double costh = (r + a.r) / d,
                              sinth = sqrt(1 - costh * costh);
            const Point d1 = e.rot(costh, -sinth), d2 = e.rot(costh, sinth);
            const Point u1 = c + d1 * r, u2 = c + d2 * r, v1 = a.c - d1 * a.r,
                        v2 = a.c - d2 * a.r;
            lines.push_back({u1, v1 - u1});
            lines.push_back({u2, v2 - u2});
        }
        return lines;
    }

    // 圆的反演
    tuple<int, Circle, Line> inverse(const Line& l) const {
        const Circle null_c = {{0.0, 0.0}, 0.0};
        const Line null_l = {{0.0, 0.0}, {0.0, 0.0}};
        if (l.toleft(c) == 0)
            return {2, null_c, l};
        const Point v =
            l.toleft(c) == 1 ? Point{l.v.y, -l.v.x} : Point{-l.v.y, l.v.x};
        const long double d = r * r / l.dis(c);
        const Point p = c + v / v.len() * d;
        return {1, {(c + p) / 2, d / 2}, null_l};
    }

    tuple<int, Circle, Line> inverse(const Circle& a) const {
        const Circle null_c = {{0.0, 0.0}, 0.0};
        const Line null_l = {{0.0, 0.0}, {0.0, 0.0}};
        const Point v = a.c - c;
        if (a.is_in(c) == -1) {
            const long double d = r * r / (a.r + a.r);
            const Point p = c + v / v.len() * d;
            return {2, null_c, {p, {-v.y, v.x}}};
        }
        if (c == a.c)
            return {1, {c, r * r / a.r}, null_l};
        const long double d1 = r * r / (c.dis(a.c) - a.r),
                          d2 = r * r / (c.dis(a.c) + a.r);
        const Point p = c + v / v.len() * d1, q = c + v / v.len() * d2;
        return {1, {(p + q) / 2, p.dis(q) / 2}, null_l};
    }
};

// 圆与多边形面积交
long double area_inter(const Circle& circ, const Polygon& poly) {
    const auto cal = [](const Circle& circ, const Point& a, const Point& b) {
        if ((a - circ.c).toleft(b - circ.c) == 0)
            return 0.0l;
        const auto ina = circ.is_in(a), inb = circ.is_in(b);
        const Line ab = {a, b - a};
        if (ina && inb)
            return ((a - circ.c) ^ (b - circ.c)) / 2;
        if (ina && !inb) {
            const auto t = circ.inter(ab);
            const Point p = t.size() == 1 ? t[0] : t[1];
            const long double ans = ((a - circ.c) ^ (p - circ.c)) / 2;
            const long double th = (p - circ.c).ang(b - circ.c);
            const long double d = circ.r * circ.r * th / 2;
            if ((a - circ.c).toleft(b - circ.c) == 1)
                return ans + d;
            return ans - d;
        }
        if (!ina && inb) {
            const Point p = circ.inter(ab)[0];
            const long double ans = ((p - circ.c) ^ (b - circ.c)) / 2;
            const long double th = (a - circ.c).ang(p - circ.c);
            const long double d = circ.r * circ.r * th / 2;
            if ((a - circ.c).toleft(b - circ.c) == 1)
                return ans + d;
            return ans - d;
        }
        const auto p = circ.inter(ab);
        if (p.size() == 2 && Segment{a, b}.dis(circ.c) <= circ.r + eps) {
            const long double ans = ((p[0] - circ.c) ^ (p[1] - circ.c)) / 2;
            const long double th1 = (a - circ.c).ang(p[0] - circ.c),
                              th2 = (b - circ.c).ang(p[1] - circ.c);
            const long double d1 = circ.r * circ.r * th1 / 2,
                              d2 = circ.r * circ.r * th2 / 2;
            if ((a - circ.c).toleft(b - circ.c) == 1)
                return ans + d1 + d2;
            return ans - d1 - d2;
        }
        const long double th = (a - circ.c).ang(b - circ.c);
        if ((a - circ.c).toleft(b - circ.c) == 1)
            return circ.r * circ.r * th / 2;
        return -circ.r * circ.r * th / 2;
    };

    long double ans = 0;
    for (size_t i = 0; i < poly.p.size(); i++) {
        const Point a = poly.p[i], b = poly.p[poly.nxt(i)];
        ans += cal(circ, a, b);
    }
    return ans;
}

// 点集的凸包
// Andrew 算法,复杂度 O(nlogn)
Convex convexhull(vector<Point> p) {
    vector<Point> st;
    if (p.empty())
        return Convex{st};
    sort(p.begin(), p.end());
    const auto check = [](const vector<Point>& st, const Point& u) {
        const auto back1 = st.back(), back2 = *prev(st.end(), 2);
        return (back1 - back2).toleft(u - back1) <= 0;
    };
    for (const Point& u : p) {
        while (st.size() > 1 && check(st, u))
            st.pop_back();
        st.push_back(u);
    }
    size_t k = st.size();
    p.pop_back();
    reverse(p.begin(), p.end());
    for (const Point& u : p) {
        while (st.size() > k && check(st, u))
            st.pop_back();
        st.push_back(u);
    }
    st.pop_back();
    return Convex{st};
}

// 半平面交
// 排序增量法,复杂度 O(nlogn)
// 输入与返回值都是用直线表示的半平面集合
vector<Line> halfinter(vector<Line> l, const point_t lim = 1e9) {
    const auto check = [](const Line& a, const Line& b, const Line& c) {
        return a.toleft(b.inter(c)) < 0;
    };
    // 无精度误差的方法,但注意取值范围会扩大到三次方
    /*const auto check=[](const Line &a,const Line &b,const Line &c)
    {
        const Point
    p=a.v*(b.v^c.v),q=b.p*(b.v^c.v)+b.v*(c.v^(b.p-c.p))-a.p*(b.v^c.v); return
    p.toleft(q)<0;
    };*/
    l.push_back({{-lim, 0}, {0, -1}});
    l.push_back({{0, -lim}, {1, 0}});
    l.push_back({{lim, 0}, {0, 1}});
    l.push_back({{0, lim}, {-1, 0}});
    sort(l.begin(), l.end());
    deque<Line> q;
    for (size_t i = 0; i < l.size(); i++) {
        if (i > 0 && l[i - 1].v.toleft(l[i].v) == 0 &&
            l[i - 1].v * l[i].v > eps)
            continue;
        while (q.size() > 1 && check(l[i], q.back(), q[q.size() - 2]))
            q.pop_back();
        while (q.size() > 1 && check(l[i], q[0], q[1]))
            q.pop_front();
        if (!q.empty() && q.back().v.toleft(l[i].v) <= 0)
            return vector<Line>();
        q.push_back(l[i]);
    }
    while (q.size() > 1 && check(q[0], q.back(), q[q.size() - 2]))
        q.pop_back();
    while (q.size() > 1 && check(q.back(), q[0], q[1]))
        q.pop_front();
    return vector<Line>(q.begin(), q.end());
}

// 点集形成的最小最大三角形
// 极角序扫描线,复杂度 O(n^2logn)
// 最大三角形问题可以使用凸包与旋转卡壳做到 O(n^2)
pair<point_t, point_t> minmax_triangle(const vector<Point>& vec) {
    if (vec.size() <= 2)
        return {0, 0};
    vector<pair<int, int>> evt;
    evt.reserve(vec.size() * vec.size());
    point_t maxans = 0, minans = numeric_limits<point_t>::max();
    for (size_t i = 0; i < vec.size(); i++) {
        for (size_t j = 0; j < vec.size(); j++) {
            if (i == j)
                continue;
            if (vec[i] == vec[j])
                minans = 0;
            else
                evt.push_back({i, j});
        }
    }
    sort(evt.begin(), evt.end(),
         [&](const pair<int, int>& u, const pair<int, int>& v) {
             const Point du = vec[u.second] - vec[u.first],
                         dv = vec[v.second] - vec[v.first];
             return argcmp()({du.y, -du.x}, {dv.y, -dv.x});
         });
    vector<size_t> vx(vec.size()), pos(vec.size());
    for (size_t i = 0; i < vec.size(); i++)
        vx[i] = i;
    sort(vx.begin(), vx.end(), [&](int x, int y) { return vec[x] < vec[y]; });
    for (size_t i = 0; i < vx.size(); i++)
        pos[vx[i]] = i;
    for (auto [u, v] : evt) {
        const size_t i = pos[u], j = pos[v];
        const size_t l = min(i, j), r = max(i, j);
        const Point vecu = vec[u], vecv = vec[v];
        if (l > 0)
            minans = min(
                minans, abs((vec[vx[l - 1]] - vecu) ^ (vec[vx[l - 1]] - vecv)));
        if (r < vx.size() - 1)
            minans = min(
                minans, abs((vec[vx[r + 1]] - vecu) ^ (vec[vx[r + 1]] - vecv)));
        maxans = max({maxans, abs((vec[vx[0]] - vecu) ^ (vec[vx[0]] - vecv)),
                      abs((vec[vx.back()] - vecu) ^ (vec[vx.back()] - vecv))});
        if (i < j)
            swap(vx[i], vx[j]), pos[u] = j, pos[v] = i;
    }
    return {minans, maxans};
}

// 判断多条线段是否有交点
// 扫描线,复杂度 O(nlogn)
bool segs_inter(const vector<Segment>& segs) {
    if (segs.empty())
        return false;
    using seq_t = tuple<point_t, int, Segment>;
    const auto seqcmp = [](const seq_t& u, const seq_t& v) {
        const auto [u0, u1, u2] = u;
        const auto [v0, v1, v2] = v;
        if (abs(u0 - v0) <= eps)
            return make_pair(u1, u2) < make_pair(v1, v2);
        return u0 < v0 - eps;
    };
    vector<seq_t> seq;
    for (auto seg : segs) {
        if (seg.a.x > seg.b.x + eps)
            swap(seg.a, seg.b);
        seq.push_back({seg.a.x, 0, seg});
        seq.push_back({seg.b.x, 1, seg});
    }
    sort(seq.begin(), seq.end(), seqcmp);
    point_t x_now;
    auto cmp = [&](const Segment& u, const Segment& v) {
        if (abs(u.a.x - u.b.x) <= eps || abs(v.a.x - v.b.x) <= eps)
            return u.a.y < v.a.y - eps;
        return ((x_now - u.a.x) * (u.b.y - u.a.y) + u.a.y * (u.b.x - u.a.x)) *
                   (v.b.x - v.a.x) <
               ((x_now - v.a.x) * (v.b.y - v.a.y) + v.a.y * (v.b.x - v.a.x)) *
                       (u.b.x - u.a.x) -
                   eps;
    };
    multiset<Segment, decltype(cmp)> s{cmp};
    for (const auto [x, o, seg] : seq) {
        x_now = x;
        const auto it = s.lower_bound(seg);
        if (o == 0) {
            if (it != s.end() && seg.is_inter(*it))
                return true;
            if (it != s.begin() && seg.is_inter(*prev(it)))
                return true;
            s.insert(seg);
        } else {
            if (next(it) != s.end() && it != s.begin() &&
                (*prev(it)).is_inter(*next(it)))
                return true;
            s.erase(it);
        }
    }
    return false;
}

// 多边形面积并
// 轮廓积分,复杂度 O(n^2logn),n为边数
// ans[i] 表示被至少覆盖了 i+1 次的区域的面积
vector<long double> area_union(const vector<Polygon>& polys) {
    const size_t siz = polys.size();
    vector<vector<pair<Point, Point>>> segs(siz);
    const auto check = [](const Point& u, const Segment& e) {
        return !((u < e.a && u < e.b) || (u > e.a && u > e.b));
    };

    auto cut_edge = [&](const Segment& e, const size_t i) {
        const Line le{e.a, e.b - e.a};
        vector<pair<Point, int>> evt;
        evt.push_back({e.a, 0});
        evt.push_back({e.b, 0});
        for (size_t j = 0; j < polys.size(); j++) {
            if (i == j)
                continue;
            const auto& pj = polys[j];
            for (size_t k = 0; k < pj.p.size(); k++) {
                const Segment s = {pj.p[k], pj.p[pj.nxt(k)]};
                if (le.toleft(s.a) == 0 && le.toleft(s.b) == 0) {
                    evt.push_back({s.a, 0});
                    evt.push_back({s.b, 0});
                } else if (s.is_inter(le)) {
                    const Line ls{s.a, s.b - s.a};
                    const Point u = le.inter(ls);
                    if (le.toleft(s.a) < 0 && le.toleft(s.b) >= 0)
                        evt.push_back({u, -1});
                    else if (le.toleft(s.a) >= 0 && le.toleft(s.b) < 0)
                        evt.push_back({u, 1});
                }
            }
        }
        sort(evt.begin(), evt.end());
        if (e.a > e.b)
            reverse(evt.begin(), evt.end());
        int sum = 0;
        for (size_t i = 0; i < evt.size(); i++) {
            sum += evt[i].second;
            const Point u = evt[i].first, v = evt[i + 1].first;
            if (!(u == v) && check(u, e) && check(v, e))
                segs[sum].push_back({u, v});
            if (v == e.b)
                break;
        }
    };

    for (size_t i = 0; i < polys.size(); i++) {
        const auto& pi = polys[i];
        for (size_t k = 0; k < pi.p.size(); k++) {
            const Segment ei = {pi.p[k], pi.p[pi.nxt(k)]};
            cut_edge(ei, i);
        }
    }
    vector<long double> ans(siz);
    for (size_t i = 0; i < siz; i++) {
        long double sum = 0;
        sort(segs[i].begin(), segs[i].end());
        int cnt = 0;
        for (size_t j = 0; j < segs[i].size(); j++) {
            if (j > 0 && segs[i][j] == segs[i][j - 1])
                segs[i + (++cnt)].push_back(segs[i][j]);
            else
                cnt = 0, sum += segs[i][j].first ^ segs[i][j].second;
        }
        ans[i] = sum / 2;
    }
    return ans;
}

// 圆面积并
// 轮廓积分,复杂度 O(n^2logn)
// ans[i] 表示被至少覆盖了 i+1 次的区域的面积
vector<long double> area_union(const vector<Circle>& circs) {
    const size_t siz = circs.size();
    using arc_t = tuple<Point, long double, long double, long double>;
    vector<vector<arc_t>> arcs(siz);
    const auto eq = [](const arc_t& u, const arc_t& v) {
        const auto [u1, u2, u3, u4] = u;
        const auto [v1, v2, v3, v4] = v;
        return u1 == v1 && abs(u2 - v2) <= eps && abs(u3 - v3) <= eps &&
               abs(u4 - v4) <= eps;
    };

    auto cut_circ = [&](const Circle& ci, const size_t i) {
        vector<pair<long double, int>> evt;
        evt.push_back({-PI, 0});
        evt.push_back({PI, 0});
        int init = 0;
        for (size_t j = 0; j < circs.size(); j++) {
            if (i == j)
                continue;
            const Circle& cj = circs[j];
            if (ci.r < cj.r - eps && ci.relation(cj) >= 3)
                init++;
            const auto inters = ci.inter(cj);
            if (inters.size() == 1)
                evt.push_back(
                    {atan2l((inters[0] - ci.c).y, (inters[0] - ci.c).x), 0});
            if (inters.size() == 2) {
                const Point dl = inters[0] - ci.c, dr = inters[1] - ci.c;
                long double argl = atan2l(dl.y, dl.x),
                            argr = atan2l(dr.y, dr.x);
                if (abs(argl + PI) <= eps)
                    argl = PI;
                if (abs(argr + PI) <= eps)
                    argr = PI;
                if (argl > argr + eps) {
                    evt.push_back({argl, 1});
                    evt.push_back({PI, -1});
                    evt.push_back({-PI, 1});
                    evt.push_back({argr, -1});
                } else {
                    evt.push_back({argl, 1});
                    evt.push_back({argr, -1});
                }
            }
        }
        sort(evt.begin(), evt.end());
        int sum = init;
        for (size_t i = 0; i < evt.size(); i++) {
            sum += evt[i].second;
            if (abs(evt[i].first - evt[i + 1].first) > eps)
                arcs[sum].push_back(
                    {ci.c, ci.r, evt[i].first, evt[i + 1].first});
            if (abs(evt[i + 1].first - PI) <= eps)
                break;
        }
    };

    const auto oint = [](const arc_t& arc) {
        const auto [cc, cr, l, r] = arc;
        if (abs(r - l - PI - PI) <= eps)
            return 2.0l * PI * cr * cr;
        return cr * cr * (r - l) + cc.x * cr * (sin(r) - sin(l)) -
               cc.y * cr * (cos(r) - cos(l));
    };

    for (size_t i = 0; i < circs.size(); i++) {
        const auto& ci = circs[i];
        cut_circ(ci, i);
    }
    vector<long double> ans(siz);
    for (size_t i = 0; i < siz; i++) {
        long double sum = 0;
        sort(arcs[i].begin(), arcs[i].end());
        int cnt = 0;
        for (size_t j = 0; j < arcs[i].size(); j++) {
            if (j > 0 && eq(arcs[i][j], arcs[i][j - 1]))
                arcs[i + (++cnt)].push_back(arcs[i][j]);
            else
                cnt = 0, sum += oint(arcs[i][j]);
        }
        ans[i] = sum / 2;
    }
    return ans;
}
  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值