机器翻译——基于含注意力机制的解码编码器

一、机器翻译

机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

1.1 编码器——解码器

1.1.1 编码器作用

编码器负责将输入文本(源语言文本)转换为一种表示形式,通常是一个向量或者一组向量。
输入文本可以是一个句子或者一个段落,在处理时会转换为词嵌入(Word Embeddings)或者其他形式的词级表示。
编码器利用这些表示形式捕捉输入文本的语义和语法信息,以便后续解码器能够正确地将其翻译成目标语言。

1.1.2 解码器作用

解码器接收来自编码器的表示形式,并将其转换为目标语言文本。
解码器通过逐步生成目标语言文本的序列来完成翻译过程。
在生成每个单词或者子词时,解码器利用之前生成的部分序列信息,结合编码器提供的输入信息,以及内部的语言模型来做出决策。

1.1.3 编码器——解码器结构

在机器翻译系统中,编码器和解码器通常是通过循环神经网络(RNN)或者注意力机制(Attention Mechanism)来实现的。编码器将源语言的信息编码成一个固定长度的向量,解码器则根据这个向量生成目标语言的翻译。

接下来我们要说的是通过注意力机制来实现的编码器和解码器

在这里插入图片描述

1.2 含注意力机制的编码器—解码器

我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。

1.2.1 编码器

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

1.2.1.1数据预处理

我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

!tar -xf d2lzh_pytorch.tar
import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(torch.__version__, device)
1.5.0 cpu

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)  #增加序列长度,让序列等长
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]  # vocab.stoi[w]将seq中的每个标记w转换为词汇表vocab中相应的索引。
    return vocab, torch.tensor(indices)

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:  
        lines = f.readlines()        # 打开文件,并将每一行读入lines列表中
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')  # 对于每一行,使用'\t'分割输入和输出序列
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')  # in_seq_tokens和out_seq_tokens分别是输入和输出序列中的标记列表
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)   # 将输入序列标记添加到 in_tokens,并将处理后的序列添加到 in_seqs
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)   # 将输出序列标记添加到 out_tokens,并将处理后的序列添加到 out_seqs
    in_vocab, in_data = build_data(in_tokens, in_seqs)        
    out_vocab, out_data = build_data(out_tokens, out_seqs)    # 使用build_data函数构建输入和输出序列的词汇表,并将序列转换为索引张量
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]   # 将得到一个元组,这表示第一个样本的输入序列和输出序列的张量数据
(tensor([ 5,  4, 45,  3,  2,  0,  0]), tensor([ 8,  4, 27,  3,  2,  0,  0]))
1.2.1.2 词嵌入

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)  # 将输入的词汇索引转换为密集的词嵌入表示
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)   # 接受嵌入后的输入,并且输出GRU层的输出和最终的状态

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # 将输入的词汇索引转换为词嵌入表示,并通过permute重新排列张量的维度,以适应GRU层的输入要求
        return self.rnn(embedding, state)  # 将重新排列的嵌入向量和初始状态传递给GRU层,返回GRU层的输出和最终状态

    def begin_state(self):
        return None
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape    # GRU的state是h, 而LSTM的是一个元组(h, c)
(torch.Size([7, 4, 16]), torch.Size([2, 4, 16]))

1.2.1.3 注意力机制

我们将实现函数 a a a:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数(我已经在上一篇文章中提过了tanh函数作为激活函数的作用)作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数 a a a定义里向量 v \boldsymbol{v} v的长度是一个超参数,即attention_size

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),  # 线性变换,这一操作对输入数据应用线性变换
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))  # 线性变换,到1,没有偏置,将注意力特征向量减少到一个标量值,表示注意力权重
    return model

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)   # 将解码器的隐藏状态增加一个维度,形状变为1
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)   # 将编码器隐藏状态和广播后的解码器隐藏状态沿着特征维度进行连接
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量
seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape
 # 首先,解码器的隐藏状态会被广播和重塑,以便与编码器隐藏状态进行连接和处理
 # 然后,通过model计算注意力权重,并得到最终的背景向量。
torch.Size([4, 8])

1.2.2 含注意力机制的解码器

我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)  # 将输入的单词索引转换为密集向量表示,输入词汇表大小为vocab_size,输出的嵌入向量大小为embed_size
        self.attention = attention_model(2*num_hiddens, attention_size)  # 创建注意力模型,输入维度是2*num_hiddens,输出维度为attention_size
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是num_hiddens + embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)   
        # num_hiddens是GRU单元的隐藏状态大小,num_layers指定了堆叠的 GRU 层的数量,dropout是可选的丢弃率,用于控制训练时的随机丢弃概率

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

1.3 训练模型

我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,同10.3节(word2vec的实现)中的实现一样,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):  # 用于计算一个批次序列的平均损失
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 从输入 X 中确定批次大小,使用编码器初始化编码器状态,将输入X通过编码器处理,得到编码器的输出和最终的编码器状态
   
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len) 
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        # 遍历目标序列Y,进行时间步长的迭代,将当前解码器输入、解码器状态和编码器输出传递给解码器,这将计算解码器的输出并更新解码器状态。
        # 使用提供的损失函数loss计算当前时间步长的损失,并累积到l中,掩码确保在损失计算中忽略填充标记
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens
   # 该函数有效地使用了序列到序列模型进行批次序列的损失计算,同时使用了强制教学策略。它处理了填充标记的掩码,并计算每个标记的平均损失
   # 这对于有效训练序列模型至关重要,编码器和解码器允许它们封装自己的行为和参数


def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)  # 初始化编码器的优化器,使用Adam算法,并传入编码器的参数和学习率lr
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)  # 初始化解码器的优化器,使用Adam算法,并传入解码器的参数和学习率lr

    loss = nn.CrossEntropyLoss(reduction='none')  # 定义交叉熵损失函数,设置reduction='none',这样会返回每个样本点的损失,而不是对损失进行平均。
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)  # 加载数据集 dataset,每次从中提取batch_size个样本,并在每个 epoch 之前对数据进行随机洗牌    
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            l = batch_loss(encoder, decoder, X, Y, loss)  # 调用batch_loss函数计算当前批次的损失l
            l.backward()
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()  # 将当前批次的损失值累加到l_sum中
        if (epoch + 1) % 10 == 0:  # 每训练完10个epoch输出一次训练进度
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))  # 打印当前epoch的序号和平均损失值。
embed_size, num_hiddens, num_layers = 64, 64, 2  # 先设置嵌入层的维度大小,每个循环神经网络隐藏层的单元数,循环神经网络的层数。
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50  # 再设置学习率,样本数等等
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers, 
                  drop_prob)  # len(in_vocab)是输入词汇表的大小,用于确定输入数据的维度
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)  
train(encoder, decoder, dataset, lr, batch_size, num_epochs)  # 训练编码器-解码器模型
# 他将编码器和解码器的实例、数据集,学习率、批量大小和总轮数作为参数
# 它使用了Adam和交叉熵损失函数,并在每轮结束时打印出平均损失,以便跟踪训练进度
epoch 10, loss 0.417
epoch 20, loss 0.234
epoch 30, loss 0.113
epoch 40, loss 0.047
epoch 50, loss 0.055

1.4 预测不定长的序列

我们介绍了3种方法来生成解码器在每个时间步的输出。这里我们实现最简单的贪婪搜索。

def translate(encoder, decoder, input_seq, max_seq_len):
    in_tokens = input_seq.split(' ')  # 将输入序列按空格分割为单词列表
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)  # 在输入序列末尾添加EOS标记和PAD,确保序列长度达到最大长度
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
# 将输入单词列表转换为对应的整数索引,形状为[1, seq_len],其中seq_len是输入序列的长度
    enc_state = encoder.begin_state()
    enc_output, enc_state = encoder(enc_input, enc_state)
    dec_input = torch.tensor([out_vocab.stoi[BOS]])  # 使用解码器词汇表中的 BOS 标记初始化解码器的输入
    dec_state = decoder.begin_state(enc_state)
    output_tokens = []
    for _ in range(max_seq_len):  # 使用循环进行解码,直到达到max_seq_len或者预测到EOS标记为止
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        pred = dec_output.argmax(dim=1)
        pred_token = out_vocab.itos[int(pred.item())]  # 将预测的整数索引转换为输出词汇表中的实际单词
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            output_tokens.append(pred_token)
            dec_input = pred
    return output_tokens
# 如果预测到EOS,则停止解码,否则将预测的单词添加到输出序列中,并更新解码器的输入为当前预测值。

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)
# 输入序列 'ils regardent .' 首先被分割为单词列表 ['ils', 'regardent', '.']。
# 根据模型的要求,会添加EOS和PAD标记,因此序列的最大长度为4,而不是3
# 首先预测第一个单词,然后根据解码器的输出和状态继续生成下一个单词,直到预测到EOS标记或者达到最大序列长度
['they', 'are', 'watching', '.']

1.5 评价翻译结果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为 n n n的子序列的精度为 p n p_n pn。它是预测序列与标签序列匹配词数为 n n n的子序列的数量与预测序列中词数为 n n n的子序列的数量之比。举个例子,假设标签序列为 A A A B B B C C C D D D E E E F F F,预测序列为 A A A B B B B B B C C C D D D,那么 p 1 = 4 / 5 , p 2 = 3 / 4 , p 3 = 1 / 3 , p 4 = 0 p_1 = 4/5, p_2 = 3/4, p_3 = 1/3, p_4 = 0 p1=4/5,p2=3/4,p3=1/3,p4=0。设 l e n label len_{\text{label}} lenlabel l e n pred len_{\text{pred}} lenpred分别为标签序列和预测序列的词数,那么,BLEU的定义为

exp ⁡ ( min ⁡ ( 0 , 1 − l e n label l e n pred ) ) ∏ n = 1 k p n 1 / 2 n , \exp\left(\min\left(0, 1 - \frac{len_{\text{label}}}{len_{\text{pred}}}\right)\right) \prod_{n=1}^k p_n^{1/2^n}, exp(min(0,1lenpredlenlabel))n=1kpn1/2n,

其中 k k k是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当 p n p_n pn固定在0.5时,随着 n n n的增大, 0. 5 1 / 2 ≈ 0.7 , 0. 5 1 / 4 ≈ 0.84 , 0. 5 1 / 8 ≈ 0.92 , 0. 5 1 / 16 ≈ 0.96 0.5^{1/2} \approx 0.7, 0.5^{1/4} \approx 0.84, 0.5^{1/8} \approx 0.92, 0.5^{1/16} \approx 0.96 0.51/20.7,0.51/40.84,0.51/80.92,0.51/160.96。另外,模型预测较短序列往往会得到较高 p n p_n pn值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当 k = 2 k=2 k=2时,假设标签序列为 A A A B B B C C C D D D E E E F F F,而预测序列为 A A A B B B。虽然 p 1 = p 2 = 1 p_1 = p_2 = 1 p1=p2=1,但惩罚系数 exp ⁡ ( 1 − 6 / 2 ) ≈ 0.14 \exp(1-6/2) \approx 0.14 exp(16/2)0.14,因此BLEU也接近0.14。

下面来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)  # 两个分别表示预测的和参考的标记化序列
    score = math.exp(min(0, 1 - len_label / len_pred))  
# 使用长度惩罚项初始化分数,该项惩罚短于参考长度的翻译,生成与参考相似或更长的翻译
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int) 
# num_matches统计在pred_tokens中与label_tokens中的任何n-gram匹配的数量
# label_subs是一个字典,存储label_tokens中每个n-gram的计数
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
# 对于每个n-gram长度,函数计算label_tokens中每个n-gram的出现次数
# 然后检查pred_tokens中有多少n-gram出现,如果在两者中都出现,则增加num_matches,并在label_subs中减少其计数,以确保不重复计数
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
# 对于每个n-gram长度,计算num_matches / (len_pred - n + 1),衡量预测标记中有多少n-gram与参考标记匹配
# 乘以一个衰减因子math.pow(0.5, n),惩罚较长的n-gram
    return score

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')  # 将标签序列label_seq按空格分割为标记列表label_tokens
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))
# 使用print函数输出结果,包括格式化的BLEU分数和预测的标记序列pred_tokens的字符串表示

预测正确则分数为1。

score('ils regardent .', 'they are watching .', k=2)
bleu 1.000, predict: they are watching .
score('ils sont canadienne .', 'they are canadian .', k=2)
bleu 0.658, predict: they are watching .
  • 19
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值