机器翻译——编码器、解码器和注意力机制的应用

什么是机器翻译?

相信大家在看外语电影时,都会或多或少的感受到语言不互通问题的困扰吧?没有字幕时,“啃生肉”般看电影会破坏美好的意境——镜头前,男主女主在含情脉脉、语速极快的说着什么,观众一点也听不懂。在没有人工字幕的时候,我们可以使用机器翻译,俗称机翻,来将就一下,帮助我们快速理解他们在说什么。

机器翻译(MT)是一种自动将源语言文本翻译成目标语言的技术。它使用特定的算法和模型,尝试在不同语言之间实现最佳的语义映射,实现更精准的翻译。

一、前置知识

1.1 编码器

编码器的作用是把一个不定长的输入序列变换成一个定长的背景变量𝑐,并在该背景变量中编码输入序列信息。常用的编码器是循环神经网络。

让我们考虑批量大小为1的时序数据样本。假设输入序列是𝑥1,…,𝑥𝑇,例如𝑥𝑖是输入句子中的第𝑖个词。在时间步𝑡,循环神经网络将输入𝑥𝑡的特征向量𝑥𝑡和上个时间步的隐藏状态ℎ𝑡−1变换为当前时间步的隐藏状态ℎ𝑡。我们可以用函数𝑓表达循环神经网络隐藏层的变换:

ℎ𝑡=𝑓(𝑥𝑡,ℎ𝑡−1).

接下来,编码器通过自定义函数𝑞将各个时间步的隐藏状态变换为背景变量

𝑐=𝑞(ℎ1,…,ℎ𝑇).

例如,当选择𝑞(ℎ1,…,ℎ𝑇)=ℎ𝑇时,背景变量是输入序列最终时间步的隐藏状态ℎ𝑇。

以上描述的编码器是一个单向的循环神经网络,每个时间步的隐藏状态只取决于该时间步及之前的输入子序列。我们也可以使用双向循环神经网络构造编码器。在这种情况下,编码器每个时间步的隐藏状态同时取决于该时间步之前和之后的子序列(包括当前时间步的输入),并编码了整个序列的信息。

1.2 解码器

刚刚已经介绍,编码器输出的背景变量𝑐编码了整个输入序列𝑥1,…,𝑥𝑇的信息。给定训练样本中的输出序列𝑦1,𝑦2,…,𝑦𝑇′,对每个时间步𝑡′(符号与输入序列或编码器的时间步𝑡有区别),解码器输出𝑦𝑡′的条件概率将基于之前的输出序列𝑦1,…,𝑦𝑡′−1和背景变量𝑐,即𝑃(𝑦𝑡′∣𝑦1,…,𝑦𝑡′−1,𝑐)。

为此,我们可以使用另一个循环神经网络作为解码器。在输出序列的时间步𝑡′,解码器将上一时间步的输出𝑦𝑡′−1以及背景变量𝑐作为输入,并将它们与上一时间步的隐藏状态𝑠𝑡′−1变换为当前时间步的隐藏状态𝑠𝑡′。因此,我们可以用函数𝑔表达解码器隐藏层的变换:

𝑠𝑡′=𝑔(𝑦𝑡′−1,𝑐,𝑠𝑡′−1).

有了解码器的隐藏状态后,我们可以使用自定义的输出层和softmax运算来计算𝑃(𝑦𝑡′∣𝑦1,…,𝑦𝑡′−1,𝑐),例如,基于当前时间步的解码器隐藏状态 𝑠𝑡′、上一时间步的输出𝑦𝑡′−1以及背景变量𝑐来计算当前时间步输出𝑦𝑡′的概率分布。

二、机器翻译流程

2.1 读取和预处理数据

首先进行必要的模块导入,定义一些特殊字符,设置设备(GPU 或 CPU),并打印相关信息,为后续模型的训练和测试做好准备。

import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(torch.__version__, device)

运行后,结果说明本次机器没有配备GPU。

 

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

下一步是:创建词典以及对应的索引 。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

 

(tensor([ 5,  4, 45,  3,  2,  0,  0]), tensor([ 8,  4, 27,  3,  2,  0,  0]))

成功创建法语与英语的索引如上。

2.2 含注意力机制的编码器—解码器

2.2.1 编码器

定义解码器:

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。

设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

  

2.2.2 注意力机制

首先,定义注意力模型:

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model

隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。 

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

实例化:如果编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。 

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape

 

2.2.3 含注意力机制的解码器

总结上述,我们可以将这二者结合,但这一操作要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数:

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

最后,可以输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

2.3 训练模型

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。 

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    """
    训练循环,用于训练编码器和解码器模型。

    Args:
        encoder (torch.nn.Module): 编码器模型
        decoder (torch.nn.Module): 解码器模型
        dataset (torch.utils.data.Dataset): 数据集
        lr (float): 学习率
        batch_size (int): 批量大小
        num_epochs (int): 训练的轮数

    Returns:
        None
    """
    
    # 创建编码器和解码器的优化器
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    # 定义损失函数
    loss = nn.CrossEntropyLoss(reduction='none')

    # 创建数据迭代器
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)

    # 训练循环
    for epoch in range(num_epochs):
        l_sum = 0.0  # 初始化损失和
        
        # 遍历数据集的每个批次
        for X, Y in data_iter:
            enc_optimizer.zero_grad()  # 清空编码器梯度
            dec_optimizer.zero_grad()  # 清空解码器梯度
            
            # 计算当前批次的损失
            l = batch_loss(encoder, decoder, X, Y, loss)
            
            # 反向传播计算梯度
            l.backward()
            
            # 更新编码器和解码器参数
            enc_optimizer.step()
            dec_optimizer.step()
            
            # 累加当前批次的损失
            l_sum += l.item()
        
        # 每训练10个epoch输出一次当前平均损失
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

实例化模型,定义超参数,并训练该模型: 

embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

也是成功运行出结果了,并且训练轮数越多,损失值越低噢。

2.4 预测不定长的序列

这里我们用贪婪搜索来实现:

def translate(encoder, decoder, input_seq, max_seq_len):
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    enc_state = encoder.begin_state()
    enc_output, enc_state = encoder(enc_input, enc_state)
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    output_tokens = []
    for _ in range(max_seq_len):
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        pred = dec_output.argmax(dim=1)
        pred_token = out_vocab.itos[int(pred.item())]
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            output_tokens.append(pred_token)
            dec_input = pred
    return output_tokens

用实例测试一下模型,输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

 

2.5 评价翻译结果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

用以下代码来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    score = math.exp(min(0, 1 - len_label / len_pred))
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score
def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

如果预测正确则分数为1。接下来举两个例子: 

score('ils regardent .', 'they are watching .', k=2)
bleu 1.000, predict: they are watching .
score('ils sont canadienne .', 'they are canadian .', k=2)
bleu 0.658, predict: they are watching .

可见,第一个翻译例子是完全正确的。

  • 19
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值