在神经网络中,当一个激活函数在某个输入区域内达到其最大值或最小值,并且对输入的进一步增加或减少不再敏感时,我们就称该函数在这个区域内是"饱和"的。
举个例子,如ELU(Exponential Linear Unit )激活函数:
- 如果输入 x > 0,则 ELU(x) = x
- 如果输入 x ≤ 0,则 ELU(x) = α * (exp(x) - 1)
对于ELU函数来说,在负输入区域,随着输入值的减小,ELU 的输出将趋近于一个固定的负值(通常是 -α,其中 α 是一个超参数),而不会继续无限下降。这是因为 ELU 在负输入区域采用了指数函数的形式,当输入值足够小时,指数函数的增长会变得非常缓慢,导致输出几乎不再变化。
在 x ≤ 0 的区域,随着 x 的减小,exp(x) 的值会迅速趋向于 0,从而使得 ELU(x) 趋向于 -α。因此,我们可以说 ELU 在负输入区域是"饱和"的。
这种饱和特性有助于减少神经元在负输入区域的过度激活,并且可以使得网络的输出更加稳定。同时,由于 ELU 在负输入区域仍然有非零的输出和梯度,它也避免了像 ReLU 那样的“死亡神经元”问题。