【无聊问题之】激活函数的“饱和”是什么

在神经网络中,当一个激活函数在某个输入区域内达到其最大值或最小值,并且对输入的进一步增加或减少不再敏感时,我们就称该函数在这个区域内是"饱和"的。

举个例子,如ELU(Exponential Linear Unit )激活函数:

  • 如果输入 x > 0,则 ELU(x) = x
  • 如果输入 x ≤ 0,则 ELU(x) = α * (exp(x) - 1)

对于ELU函数来说,在负输入区域,随着输入值的减小,ELU 的输出将趋近于一个固定的负值(通常是 -α,其中 α 是一个超参数),而不会继续无限下降。这是因为 ELU 在负输入区域采用了指数函数的形式,当输入值足够小时,指数函数的增长会变得非常缓慢,导致输出几乎不再变化。

在 x ≤ 0 的区域,随着 x 的减小,exp(x) 的值会迅速趋向于 0,从而使得 ELU(x) 趋向于 -α。因此,我们可以说 ELU 在负输入区域是"饱和"的。

这种饱和特性有助于减少神经元在负输入区域的过度激活,并且可以使得网络的输出更加稳定。同时,由于 ELU 在负输入区域仍然有非零的输出和梯度,它也避免了像 ReLU 那样的“死亡神经元”问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值