强化学习中的loss函数:【优化Q值】还是【优化策略】?

在强化学习中,Q-learning或基于值函数的强化学习方法对于网络参数的调整是基于"优化Q值",而策略梯度方法或Actor-Critic方法则是基于"优化策略"。

1. 优化Q值(如:Q-learning)

在Q-learning中,我们试图学习一个Q函数,该函数可以预测在给定状态下采取某个动作的预期回报。Loss函数通常表示为预测Q值与实际Q值(通过贝尔曼方程计算得到)之间的均方误差。

import torch  
import torch.nn as nn  
import torch.optim as optim  
  
class QNetwork(nn.Module):  
    # ... (定义网络结构)  
  
# 实例化网络和优化器  
q_network = QNetwork()  
optimizer = optim.Adam(q_network.parameters(), lr=0.001)  
  
# 假设我们有一批转换数据:(states, actions, rewards, next_states, dones)  
# 其中,dones是一个表示终止状态的布尔数组  
  
# 预测Q值  
predicted_q_values = q_network(states).gather(1, actions.unsqueeze(1)).squeeze(1)  
  
# 使用贝尔曼方程计算目标Q值  
next_max_q_values = q_network(next_states).max(1)[0]  
target_q_values = rewards + (1 - dones) * 0.99 * next_max_q_values  
  
# 计算loss  
loss = nn.MSELoss()(predicted_q_values, target_q_values.detach())  
  
# 反向传播和优化  
optimizer.zero_grad()  
loss.backward()  
optimizer.step()


2. 优化策略(如:Actor-Critic)

在Actor-Critic方法中,我们有两个网络:Actor网络和Critic网络。Actor负责生成动作,Critic评估Actor生成的动作。Loss函数通常包括两部分:策略梯度loss(用于优化Actor)和价值函数loss(用于优化Critic)。

import torch  
import torch.nn as nn  
import torch.optim as optim  
import torch.nn.functional as F  
  
class Actor(nn.Module):  
    # ... (定义Actor网络结构)  
  
class Critic(nn.Module):  
    # ... (定义Critic网络结构)  
  
# 实例化网络和优化器  
actor = Actor()  
critic = Critic()  
actor_optimizer = optim.Adam(actor.parameters(), lr=0.001)  
critic_optimizer = optim.Adam(critic.parameters(), lr=0.001)  
  
# 假设我们有一批数据:(states, actions, rewards, next_states, dones)  
# 以及由Actor网络生成的动作概率log_probs和Critic网络评估的状态值values  
  
# 计算优势函数A(s, a) = Q(s, a) - V(s),这里简化处理,直接使用rewards作为Q(s, a)的近似值  
advantages = rewards - values  
  
# Actor的loss函数:策略梯度loss,使用log概率乘以优势函数来计算  
actor_loss = -torch.mean(log_probs * advantages.detach())  
  
# Critic的loss函数:均方误差loss,用于预测状态值V(s)与目标状态值(使用TD误差计算)之间的误差  
td_errors = rewards + (1 - dones) * 0.99 * critic(next_states) - values  
critic_loss = nn.MSELoss()(values, td_errors.detach())  
  
# 反向传播和优化Actor网络  
actor_optimizer.zero_grad()  
actor_loss.backward()  
actor_optimizer.step()  
  
# 反向传播和优化Critic网络  
critic_optimizer.zero_grad()  
critic_loss.backward()  
critic_optimizer.step()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值