全基因组选择中准确性的影响因素

本文通过模拟研究对比了BLUP、GBLUP和SSBLUP三种方法在不同遗传力、标记数及训练群体数量下的全基因组选择准确性。结果显示,准确性随标记密度和遗传力的增加而提高;在特定条件下,GBLUP和SSBLUP相比传统BLUP展现出更高的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目的: 比较全基因组选择中准确性的影响因素

https://www.researchgate.net/publication/326489349_Prediction_accuracies_of_genomic_selection_in_American_mink_a_simulation_study

主要考虑的因素有:

  • 比较不同方法: BLUP, GBLUP, SSBLUP
  • 不同遗传力: 0.1, 0.2, 0.5
  • 不同标记数: 10k 和50k
  • 不同训练群体数(Training Set, TS): 1000, 2000, 3000, 4000, 5000

主要结论:

  • 1, 准确性随着标记密度增加, 随着遗传力的增高, 而增高
  • 2, 在训练群体为1000时, GBLUP和SSBLUP的准确性并不比传统BLUP方法高
  • 3, 对于遗传力为0.5个性状, 训练群体的数目至少要达到300, GBLUP和SSBLUP才会比传统BLUP准确性高
  • 4, 对于低遗传力(0.1)的性状, SSBLUP比GBLUP的准确性要高,对于高遗传力的性状, SSBLUP优势不明显.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值