综合用户特征及专家信任的协作过滤推荐算法

高发展, 黄梦醒, 张婷婷. 综合用户特征及专家信任的协作过滤推荐算法[J]. 计算机科学, 2017, 44(2):103-106.
总结。

改进的混合推荐算法

混合推荐算法,即基于改进的用户特征及专家新人的协作过滤算法

  • 基于用户特征的协同过滤
    研究表明,当数据集中几乎没有用户评分数据时,利用用户特征也能启动协作过滤算法。所以当新用户到达推荐系统时,利用用户填写的注册信息可以有效缓解推荐系统中的冷启动问题。
    (1)用户性别:,不同性别的用户的会选择不同类别的项目。比如,女性用户偏向于情感片,男性用户偏向于武打动作片。所以将性别分为男性、女性。
    0: 代表男性;
    1 :代表女性。
    (2)用户年龄:不同年龄段的用户需求也有所不同,比如,小孩喜欢看动画片,青少年喜欢看校园片,中年人喜欢看家庭生活片,老年人喜欢看纪录片等。通过统计分析不同年龄段的喜好差异,给出了7 个年龄段划分。
    1:0-6 岁;
    2:7-12 岁;
    3:13-18 岁;
    4:19-30 岁;
    5:31-40 岁;
    6:41-60 岁;
    7:60 岁以上。
    用户属性的相似度计算方法如式(2) 所示:
    用户相似度
    不同属性上的相似度按照式(3)进行计算:
    不同属性相似度

  • 基于专家信任的协作过滤
    该算法中只需计算活动用户与少量专家用户之间的相似度即可,可以大大降低计算的复杂度
    计算用户u 和专家e 之间的相似度的公式如下:
    用户u 和专家e 之间的相似度
    |Iu| 表示用户u 评论项目集合。

    这样用户u对项目i的预测评分值
    用户u对项目i 的预测评分值

  • 基于改进的用户特征及专家信任协作过滤算法
    用户u 和用户u 的总体相似度
    用户u 和用户u 的总体相似度
    用户u 对项目i的预测评分
    用户u 对项目i的预测评分

混合推荐算法步骤

1)建立相似度矩阵,计算用户之间的相似度,并按照式(4)将用户特征加入相似度计算中;
相似矩阵
2) 计算用户和专家之间的相似度;
用户专家相似度
3) 按照相似度从大到小排序,分别找到基于用户和基于专家的最相近的n 个用户和专家作为目标用户的邻居;
4)根据式(7) ,基于最近邻居预测目标用户对待推荐项目的评分;
5) 按照项目评分对项目排序,得到最终的Top-N 推荐。

项目完整可用,配合压缩包内数据库可直接运行使用。 eclipse+mysql5.7+jdk1.8 功能:推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影、音乐、书籍、新闻、图片、网页等)推荐给可能感兴趣的用户。通常情况下,推荐引擎的实现是通过将用户的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度。参考特征的选取可能是从项目本身的信息中提取的,或是基于用户所在的社会或社团环境。 根据如何抽取参考特征,我们可以将推荐引擎分为以下四大类: • 基于内容的推荐引擎:它将计算得到并推荐用户一些与该用户已选择过的项目相似的内容。例如,当你在网上购书时,你总是购买与历史相关的书籍,那么基于内容的推荐引擎就会给你推荐一些热门的历史方面的书籍。 • 基于协同过滤推荐引擎:它将推荐用户一些与该用户品味相似的其他用户喜欢的内容。例如,当你在网上买衣服时,基于协同过滤推荐引擎会根据你的历史购买记录或是浏览记录,分析出你的穿衣品位,并找到与你品味相似的一些用户,将他们浏览和购买的衣服推荐给你。 • 基于关联规则的推荐引擎:它将推荐用户一些采用关联规则发现算法计算出的内容。关联规则的发现算法有很多,如 Apriori、AprioriTid、DHP、FP-tree 等。 • 混合推荐引擎:结合以上各种,得到一个更加全面的推荐效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值