高发展, 黄梦醒, 张婷婷. 综合用户特征及专家信任的协作过滤推荐算法[J]. 计算机科学, 2017, 44(2):103-106.
总结。
改进的混合推荐算法
混合推荐算法,即基于改进的用户特征及专家新人的协作过滤算法
基于用户特征的协同过滤
研究表明,当数据集中几乎没有用户评分数据时,利用用户特征也能启动协作过滤算法。所以当新用户到达推荐系统时,利用用户填写的注册信息可以有效缓解推荐系统中的冷启动问题。
(1)用户性别:,不同性别的用户的会选择不同类别的项目。比如,女性用户偏向于情感片,男性用户偏向于武打动作片。所以将性别分为男性、女性。
0: 代表男性;
1 :代表女性。
(2)用户年龄:不同年龄段的用户需求也有所不同,比如,小孩喜欢看动画片,青少年喜欢看校园片,中年人喜欢看家庭生活片,老年人喜欢看纪录片等。通过统计分析不同年龄段的喜好差异,给出了7 个年龄段划分。
1:0-6 岁;
2:7-12 岁;
3:13-18 岁;
4:19-30 岁;
5:31-40 岁;
6:41-60 岁;
7:60 岁以上。
用户属性的相似度计算方法如式(2) 所示:
不同属性上的相似度按照式(3)进行计算:
基于专家信任的协作过滤
该算法中只需计算活动用户与少量专家用户之间的相似度即可,可以大大降低计算的复杂度
计算用户u 和专家e 之间的相似度的公式如下:
|Iu| 表示用户u 评论项目集合。这样用户u对项目i的预测评分值
基于改进的用户特征及专家信任协作过滤算法
用户u 和用户u 的总体相似度
用户u 对项目i的预测评分
混合推荐算法步骤
1)建立相似度矩阵,计算用户之间的相似度,并按照式(4)将用户特征加入相似度计算中;
2) 计算用户和专家之间的相似度;
3) 按照相似度从大到小排序,分别找到基于用户和基于专家的最相近的n 个用户和专家作为目标用户的邻居;
4)根据式(7) ,基于最近邻居预测目标用户对待推荐项目的评分;
5) 按照项目评分对项目排序,得到最终的Top-N 推荐。