LMI工具箱求解线性矩阵不等式(2)

上次的文章介绍了最基本的线性矩阵不等式的求法,今天我们来介绍比较复杂的线性矩阵不等式的求法。

C=[1 0;0 1];A=[1.5 3;1 2];B=[3 0.1;0.2 2.5];b=1.5,u=0.5, L=I,以下均为二阶矩阵,存在对称正定矩阵P,Q_i (i =1,2,3,4),三个正定对角矩阵E,F,G,矩阵M,N,R,W_1,W_2,使得如下LMI成立。



上一次已经介绍过A11的构造方法,接下来我们来介绍其他几个的构造方法:

A12=W2+N-M',为第一行第二列,所以termID=[1 1 2 x],因为W2为普通矩阵,所以可以写为W2=lmivar(2,[2 2]),N,M同理。

定义完之后,就可以表述A12的内容。因为W2左乘1,右乘1,所以总的可以写为lmiterm([1 1 2 W2],1,1);同理N的表述为lmiterm([1 1 2 N],1,1);在这里构造的时候,M的转置为在termID表述为-M,左乘-1,右乘1,所以表述为lmiterm([1 1 2 -M],-1,1)。

A14=PA+LE+LF,为第一行第四列,所以termID=[1 1 4 x],P前面已经定义过,不需要再定义,A,L为已知矩阵,E,F为正定对角矩阵,所以可以定义为E=lmivar(1,[1 0;1 0]),同理F。

定义完之后,就可以表述A14的内容。因为P左乘1,右乘A,所以可写为lmiterm([1 1 4 P],1,A);E左乘L,右乘1,所以表述为lmiterm([1 1 4 E],L,1);同理F为lmiterm([1 1 4 F],L,1)。

其他的基本同理,就不再赘述,附结果如下:

lmiterm([1 1 5 p],1,b);

lmiterm([1 1 6 r],1,1);lmiterm([1 1 6 -m],-1,1);

lmiterm([1 2 2 q1],-0.5,1);lmiterm([1 2 2 n],-1,1);lmiterm([1 2 2-n],-1,1);

lmiterm([1 2 6 r],-1,1);lmiterm([1 2 6 -n],-1,1);

lmiterm([1 3 3 q2],-1,1);

lmiterm([1 4 4 q3],1,1);lmiterm([1 4 4 q4],1.5,1);lmiterm([1 4 4 e],-2,1);

lmiterm([1 4 4 f],-2,1);

lmiterm([1 5 5 q3],-0.5,1);lmiterm([1 5 5 g],-2,1);

lmiterm([1 6 6 r],-1,1);lmiterm([1 6 6 -r],-1,1);

lmiterm([-2,1 1 p],1,1);

lmiterm([-3,1 1 q1],1,1);

lmiterm([-4,1 1 q2],1,1);

lmiterm([-5,1 1 q3],1,1);

lmiterm([-6,1 1 q4],1,1);

lmiterm([-7,1 1 e],1,1);

lmiterm([-8,1 1 f],1,1);

lmiterm([-9,1 1 g],1,1); 

再用:

lmisys=getlmis;

[tmin,xfeas]=feasp(lmisys)

根据得出的tmin判断是否有解。



 


  • 9
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 19
    评论
### 回答1: YALMIP 工具箱是一个 MATLAB 工具箱,能有效地解决数学优化问题。其包含了许多优化方法和求解器,可用于求解线性矩阵不等式等各种优化问题。 要使用 YALMIP 工具箱求解线性矩阵不等式,首先需要在 MATLAB 中安装 YALMIP 工具箱。安装完成后,便可以通过 MATLAB 中的一些命令,使用 YALMIP 工具箱求解线性矩阵不等式问题。 具体来说,使用 YALMIP 工具箱求解线性矩阵不等式需要以下步骤: 1. 定义问题:需要定义线性矩阵不等式问题的参数,如矩阵变量、约束条件等。 2. 建立目标函数:求解线性矩阵不等式的目标是找到最小的满足约束条件的矩阵。因此需要建立目标函数。 3. 求解问题:使用 YALMIP 工具箱的内置函数来求解问题,并将求解结果输出。 总的来说,使用 YALMIP 工具箱求解线性矩阵不等式是一个相对简单的过程。只需一些基本的 MATLAB 和线性代数知识,就可以轻松地完成问题求解。同时,YALMIP 工具箱还提供了丰富的文档和教程,可供用户参考,帮助用户更好地了解和使用该工具箱。 ### 回答2: YALMIP工具箱是MATLAB中的一个优秀的优化工具箱,可以用于求解线性矩阵不等式线性矩阵不等式是一种重要的不等式约束,用于描述系统稳定性、鲁棒性等问题。我们可以通过YALMIP工具箱求解线性矩阵不等式。 在YALMIP中,我们可以使用sdpvar来定义矩阵变量,例如: ```matlab n = 3; P = sdpvar(n,n,'symmetric'); ``` 上述代码定义了一个3x3的对称矩阵P,这里的‘symmetric’表示对称矩阵。我们可以使用LMI线性矩阵不等式)来定义约束条件,例如: ```matlab F = [P >= eye(n)]; ``` 上述代码表示P为三阶对称正定矩阵。我们既可以定义单独的LMI约束条件,也可以将多个LMI约束条件组合成一个约束条件。例如: ```matlab F = [P >= eye(n), P*A' + A*P + Q <= 0]; ``` 上述代码中约束条件为P为三阶对称正定矩阵,同时满足Lyapunov方程:P\*A' + A\*P + Q <= 0,其中Q为一个已知的对称矩阵。 通过上述定义矩阵变量和约束条件,我们可以用YALMIP的optimize函数求解线性矩阵不等式。例如: ```matlab optimize(F,objective,sdpsettings('solver','sdpt3')); ``` 上述代码中的第一个参数F为约束条件,第二个参数objective为目标函数(如果有),第三个参数为sdpsettings,指定了求解器为sdpt3。 总而言之,YALMIP工具箱的应用能够对于解决线性矩阵不等式问题带来很大的便利。 ### 回答3: YALMIP是一个MATLAB工具箱,可以用于求解各种数学优化问题。其中,线性矩阵不等式LMI)是YALMIP工具箱的一个重要应用之一。 在工程问题中,LMI通常用于描述矩阵或向量的某些性质。例如,通过LMI可以描述矩阵是否是半正定、对称正定等性质。 在YALMIP中,LMI问题可以表示为以下形式: $$ \begin{bmatrix} A_1^TX + XA_1 & \cdots & A_M^TX + XA_M \\ \vdots & \ddots & \vdots \\ A_M^TX + XA_M & \cdots & A_N^TX + XA_N + Q \end{bmatrix} \preceq 0 $$ 其中,$X$代表要求解矩阵,$A_1,...,A_N$和$Q$为已知矩阵。$\preceq$表示半正定。 我们可以通过调用YALMIP中的函数来求解LMI问题。例如,可以使用sdpvar来定义变量$X$,使用sdpsettings来设置求解器选项,使用optimize来求解。示例代码如下: ``` % 定义变量和问题 X = sdpvar(n); constraints = [A1'*X + X*A1 + ... + AM'*X + X*AM <= -Q]; options = sdpsettings('solver','mosek'); % 求解优化问题 sol = optimize(constraints,[],options); % 解析结果 if sol.problem == 0 X_value = value(X); disp("求解成功"); else disp("求解失败"); end ``` 上述代码中的变量$n$、$A_1,...,A_M$和$Q$需要根据实际情况进行定义。 通过YALMIP工具箱求解LMI问题,可以实现高效、准确地计算各种数学优化问题,具有广泛应用价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值