GPQA数据集分享

来源: AINLPer公众号(每日干货分享!!)
编辑: ShuYini
校稿: ShuYini
时间: 2024-2-28

在这里插入图片描述

尽管AI系统在许多任务上表现出色,但在需要大量专业知识和推理能力的任务上仍然存在局限性。为此,纽约大学的研究者提出了多项选择题数据集GPQA,该数据包含生物学、物理学和化学等多个学科领域共448个问题。GPQA数据集的设计考虑到了专家与非专家之间的知识差距。通过让专家编写问题并验证答案的客观性,同时让非专家尝试解决问题,可以确保数据集的问题对于非专家来说是具有挑战性的。

该数据集的问题极其难解,即便是在该领域已取得或正在攻读博士学位的专家,正确率也只有65%。而对同等专业背景但不同学科的非专家来说,正确率仅为34% 。该数据集难度巨大,现有AI模型如GPT-4在该数据集上的正确率也仅为39%。为研究人机合作监督高能AI输出的可扩展方法,

相关数据集与论文获取,GZ: AINLPer公众号 回复:GPQA数据集

### 关于 DeepSeek 671B 的 IT 信息 DeepSeek-V3 是一款拥有 671B 参数的大规模语言模型,该模型采用专家混合 (MoE) 架构设计,在每个令牌激活时仅启用 37B 参数[^2]。这种设计不仅提高了计算资源利用率,还增强了模型的表现力。 #### 技术细节 为了提升推理效率并降低成本,DeepSeek-V3 使用了多头潜在注意力(MLA)机制以及专有的 DeepSeekMoE 结构来优化性能表现。此外,团队引入了一种新的负载均衡算法——辅助无损策略,确保了更均匀的任务分配和更高的吞吐量。同时,通过设定多标签预测作为训练目标之一,进一步提升了模型的学习能力和泛化水平。 #### 训练数据集与方法论 在构建过程中,开发人员利用了一个包含约 14.8 万亿个高质量且多样化的代币的数据集对 DeepSeek-V3 进行预训练。随后经过监督微调(SFT) 和基于奖励信号的强化学习(RLHF),使得最终版本能够更好地适应实际应用场景需求。值得注意的是,尽管具备如此庞大的参数量级,整个训练周期却只需消耗大约 2.788 百万小时的 H800 GPU 时间,并且保持了极高的稳定性,从未发生过不可逆的损失激增现象。 #### 性能对比 当涉及到特定领域如教育类知识基准测试时,例如 MMLU、MMLU-Pro 或者 GPQA Diamond 等项目中,更新迭代后的 DeepSeek-R1 版本相较于早期发布的 DeepSeek-V3 展现出了更为优越的成绩;特别是在 STEM 领域内的问题解答准确性方面有了明显进步,这得益于大规模强化学习技术的应用和发展。然而,在中文环境下的简单问答任务里,由于实施了更加严格的安全控制措施,导致部分查询被拒绝响应,从而影响了整体评分结果。不过如果关闭这项特性,则可以实现超过百分之七十的回答正确率[^1]。 ```python # Python 示例:加载 DeepSeek-V3 模型 from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "deepseek-ai/DeepSeek-V3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) text = "你好世界!" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值