课程笔记
zhaoyuyu_nudt
这个作者很懒,什么都没留下…
展开
-
“深度学习与实践” 笔记(一)
“深度学习与实践” 笔记 第一课Python 基础Attention列表与元组的定义与用法列表类型使用中括号 [] ;列表:经常修改列表表示顺序列表不能作为字典key用法:定义数据集D数据列表包含所有的训练样本元组:[(1.73, 3.86, 2.50), (2.56, 9.75, 3.21), …]标签列表包含所有标签 :[1, 2, …]=================...原创 2019-04-24 13:43:53 · 320 阅读 · 0 评论 -
homework 1
题目:设计python程序,首先安装并导入opencv库:例如:conda install opencvimport cv2然后使用cv2.imread()读取任意彩色图片为numpy矩阵,然后进行以下操作:(1) 将图片的三个通道顺序进行改变,由RGB变为BRG,并用imshow()或者matplotlib中的有关函数显示图片(2) 利用Numpy给改变通道顺序的图片中指定位置打上...原创 2019-05-25 16:48:28 · 297 阅读 · 0 评论 -
“深度学习与实践” 笔记(二)
Homework2:基础作业:假设有函数y = cos(ax + b), 其中a为学号前两位(18),b为学号最后两位(22)。import tensorflow as tfa= tf.constant(18,name= ‘a’)b= tf.constant (22,name= ‘b’)x= tf.placeholder # 占位节点y= tf.Variablestp= tf.c...原创 2019-05-05 21:38:41 · 677 阅读 · 0 评论 -
深度神经网络与实践 (三)人工神经网络
人工神经网络原理实现类脑智能的两大路线一、Spike Neural Network还不成熟, 类脑, 身无网络结构。受限于深恶神经网络的理解。3.0 gen Neural Network二、Deep Neural Network1、数学模型2、智能计算更复杂的分类:Softmax与交叉熵Softmax 多分类交叉熵 ,人工神经网络实践一、 数据预处理...原创 2019-05-07 14:58:42 · 400 阅读 · 0 评论 -
《人工智能》 一阶逻辑推理
一阶逻辑推理inference rules for quantifiers {9.1.1}对于存在量词,如果知识库里面有, 存在V ,α, 这样的于是, v 就可以代换为k 。 k 是没有出现过的常量。如果存在量词前面有全称量词, 就不能替换:如果存在量词被全称量词约束了, 要对这个量词进行实例化, 怎么办? x 和y 一定有 一个函数关系, x 依赖于y , 所以对x实例化...原创 2019-05-14 22:08:39 · 3422 阅读 · 0 评论 -
Academic Writing 5.7 Conclusion& Discussion
RESULTS&DISCUSSION / Conclusion在这里插入图片描述科研论文在每一段的开头都需要一个桥梁 ,连接上下session , 这一个不一定是必要的,但是初学应该有。三次 : 要写什么, 写了什么, 将写什么, Result , Abstract , Method , Introduction 。6、前面提到的一定要有回应,repup , 前面提到...原创 2019-05-07 16:56:39 · 1074 阅读 · 0 评论 -
《人工智能》 第八章
一阶逻辑的语法及语义模型 解释命题逻辑里面的模型是:======一阶逻辑里面语句的符号:一阶逻辑里面可能元素有哪些东西?一阶逻辑的可能世界里面, 包含对象, 关系元素。要定义一阶逻辑的模型, 回到上诉三个问题, 左边有什么?右边有什么?FOL一阶逻辑的模型包含对象对象之间有关系 , 关系使用元组形式表示, 还有函数。FOL逻辑的符号个体常元: 可能世界里面具体的对象...原创 2019-05-07 21:48:38 · 4803 阅读 · 0 评论 -
《学术英文写作》 如何和编辑套磁cover letter
The authors would like to extend their appreciation to Professor Yang for their helpful discussions and theDear Eidter写投稿信如何吸引Eidtor英文单词没有书名号, 使用斜体。第一段, 出现文章名, 期刊名一边讲述一边评述模板ref 是录件号...原创 2019-05-21 16:55:49 · 711 阅读 · 0 评论 -
hw7 DeepLearning
作业三选做作业:二.选作作业:连体网络MINIST识别:构建如下图所示识别模型:该模型由两个相同的网络G(x)组成。两个网络共享相同的参数W.该模型实现如下的功能,输入两个MINIST图片,判断是不是同一个数字。例如,输入 负样本对:X1=6的图片 , X2=9的图片 输出:1输入 正样本对:X1=3的图片 , X2=3的图片 输出:0G(x)是一个一般的全连接网络(两边的网络...原创 2019-06-26 16:19:36 · 393 阅读 · 0 评论