《人工智能》 第八章

本文介绍了第一阶逻辑(FOL)的模型和解释,包括FOL模型中的对象、关系和函数,以及逻辑符号和量词的使用。讨论了如何确定全称量词和存在量词的真值,并探讨了等词在表示同一对象中的应用。同时,文章还涉及了一阶逻辑在定义亲属关系域和自然数的概念中的应用。
摘要由CSDN通过智能技术生成

一阶逻辑的语法及语义

模型 解释

命题逻辑里面的模型是:

======
在这里插入图片描述
一阶逻辑里面语句的符号:
一阶逻辑里面可能元素有哪些东西?

一阶逻辑的可能世界里面, 包含对象, 关系元素。

要定义一阶逻辑的模型, 回到上诉三个问题, 左边有什么?右边有什么?

FOL一阶逻辑的模型

  • 包含对象
  • 对象之间有关系 , 关系使用元组形式表示, 还有函数。

FOL逻辑的符号


个体常元: 可能世界里面具体的对象
谓词:用来讲关系 ,用谓词描述关系
函词: 函数,
函词和谓词之间有时候可以转换,又有区别,比如例子:
在这里插入图片描述
一阶函数的模型, 包含一组对象, 以及一个解释。
在这里插入图片描述
在这里插入图片描述
:两个。
因为右边已经固定了 ,由前三行确定 。 其实这就是问有多少种解释, 右边固定了, 左边也固定了 ,问有多少种解释。
首先, mother谓词智能解释成关系 mother{a,b} , 这两个常量符号 sucie , bob , 都既可以解释成a 也可以解释成b.
这样的模型, 有多少个可能的模型, 就是说解释有4个, 就有4个可能的模型。

下一个例子:

命题逻辑里面讲过蕴含: P(A),P(B) 蕴含? 任意x P(X), 右边这条语句在所有使得左边为真的情况(模型)下都为真。
如果说蕴含不成立,需要找到一个反例, 这个模型使得左边为真, 右边为假, 现在尝试找到这样一个模型, 要找到一个反例的模型, 首先要说清楚 ,对象集合是什么。?
假设对象集合里面有三个对象, 其中, a 和b 解释成三个对象中的两个。
找不到, 所以就得不出 任意x P(X)这样的结论。

讲蕴含的时候讲过若干种方法:
1、 模型检验
2、逻辑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值