Pytorch CUDA Cudnn python nvidiam 对应关系

本文探讨了PyTorch与cudatoolkit版本、系统CUDA版本之间的对应关系,以及CUDA与cuDNN的相互作用。通过PyTorch源码解析,阐述了如何确定CUDA库的搜索路径,并提到了conda环境下安装cudatoolkit时的库文件位置。同时,解释了CUDA、cuDNN的基本概念和它们之间的关系,强调cuDNN的安装不会影响CUDA的其他文件。
摘要由CSDN通过智能技术生成

微信公众号: “ 目标检测与跟踪基础前沿 “

” 目标跟踪基础与智能前沿 “

1.这里pytorch和cudatoolkit版本对应关系:

https://pytorch.org/get-started/previous-versions/

在这里插入图片描述
如图,pytorch 1.2.0 对应的 cuda 版本 分别可以 9.2 10.0 .还有CPU版本

2.cudatoolkit版本和系统cuda对应关系:

调用哪个 cuda 库要看生成 tensorflow / pytorch 库的时候,设置的链接库寻找目录,以 pytorch 为例,项目根目录下的 setup.py 中指定链接库的搜索目录,其中 cuda 的根目录 CUDA_HOME在 tool.setup_helpers.cuda 中有获取逻辑,大概过程是:先取默认 cuda 安装目录 /usr/local/cuda如默认目录不存在(例如安装原生 cuda 到其他自定义位置),那么搜索 nvcc 所在的目录如果 nvcc 不存在,那么直接寻找 cudart 库文件目录(此时可能是通过 conda 安装的 cudatoolkit,一般直接用 conda install cudatoolkit,就是在这里搜索到 cuda 库的),库文件目录的上级目录就作为 CU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值