书生浦语大模型实战营第三期 L2 LMDeploy量化部署实践学习笔记

教程地址

1. 创建环境

conda create -n lmdeploy -y python=3.10
conda activate lmdeploy
pip install lmdeploy[all]==0.3.0
pip install einops

2. 使用LMDeploy与模型对话

# lmdeploy chat [HF格式模型路径/TurboMind格式模型路径]
lmdeploy chat /root/internlm2-chat-1_8b

启动后就可以与InternLM2-Chat-1.8B大模型对话了,输入问题,然后需要按两下回车键(这里得注意,之前没注意还以为卡住了这么慢),速度确实比之前使用Transformer库来运行模型的速度快。

3. LMDeploy模型量化

量化是一种以参数或计算中间结果精度下降换空间节省(以及同时带来的性能提升)的策略。

  • 计算密集(compute-bound): 指推理过程中,绝大部分时间消耗在数值计算上;针对计算密集型场景,可以通过使用更快的硬件计算单元来提升计算速度。
  • 访存密集(memory-bound): 指推理过程中,绝大部分时间消耗在数据读取上;针对访存密集型场景,一般通过减少访存次数、提高计算访存比或降低访存量来优化。

常见的 LLM 模型由于 Decoder Only 架构的特性,实际推理时大多数的时间都消耗在了逐 Token 生成阶段(Decoding 阶段),是典型的访存密集型场景。可以使用KV8量化W4A16量化。

  • KV8量化是指将逐 Token(Decoding)生成过程中的上下文 K 和 V 中间结果进行 INT8 量化(计算时再反量化),以降低生成过程中的显存占用。
  • W4A16 量化,将 FP16 的模型权重量化为 INT4,Kernel 计算时,访存量直接降为 FP16 模型的 1/4,大幅降低了访存成本。Weight Only 是指仅量化权重,数值计算依然采用 FP16(需要将 INT4 权重反量化)。

3.1 KV Cache

KV Cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,KV Cache可以显著减少重复计算量,从而提升模型的推理速度。LMDeploy的KV Cache管理器可以通过设置--cache-max-entry-count参数,控制KV缓存占用剩余显存的最大比例。默认的比例为0.8。

lmdeploy chat /root/internlm2-chat-1_8b

改变--cache-max-entry-count参数,设为0.5

lmdeploy chat /root/internlm2-chat-1_8b --cache-max-entry-count 0.5

再设置为0.01,约等于禁止KV Cache占用显存:

lmdeploy chat /root/internlm2-chat-1_8b --cache-max-entry-count 0.01

可以看到随着KV Cache的降低,显存占用也在逐渐降低

3.2 W4A16量化

LMDeploy使用AWQ算法,实现模型4bit权重量化。推理引擎TurboMind提供了非常高效的4bit推理cuda kernel,性能是FP16的2.4倍以上。

执行以下命令:

lmdeploy lite auto_awq \
   /root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 1024 \
  --w-bits 4 \
  --w-group-size 128 \
  --work-dir /root/models/internlm2-chat-1_8b-4bit

量化工作结束后,新的HF模型被保存到internlm2-chat-1_8b-4bit目录。下面使用Chat功能运行W4A16量化后的模型,将KV Cache比例再次调为0.01,查看显存占用情况:

lmdeploy chat /root/models/internlm2-chat-1_8b-4bit --model-format awq --cache-max-entry-count 0.01

可以看到显存降低了接近一半左右。

4. LMDeploy服务(serve)

4.1 命令行客户端连接API服务器

通过以下命令启动API服务器,推理internlm2-chat-1_8b模型:

lmdeploy serve api_server \
    /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

由于Server在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在本地打开一个cmd窗口,输入命令如下:

ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的ssh端口号

打开http://{host}:23333查看接口的具体使用说明,如下图所示:

这个时候架构是这样的:

4.2 网页客户端连接API服务器

不关闭服务器的终端,重新打开一个终端,使用Gradio作为前端,启动网页客户端:

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

运行命令后,网页客户端启动。在电脑本地新建一个cmd终端,新开一个转发端口:

ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p <你的ssh端口号>

打开浏览器,访问地址http://127.0.0.1:6006:

体验速度明显快于不使用LMDeploy部署运行模型,此时的架构如下图所示:

5. python代码集成

from lmdeploy import pipeline

pipe = pipeline('/root/internlm2-chat-1_8b')
response = pipe(['Hi, pls intro yourself', '上海是'])
print(response)

运行结果如下:

还可以向lmdeploy中传递参数实现调整k/v cache内存占比:

from lmdeploy import pipeline, TurbomindEngineConfig

# 调低 k/v cache内存占比调整为总显存的 20%
backend_config = TurbomindEngineConfig(cache_max_entry_count=0.2)

pipe = pipeline('/root/internlm2-chat-1_8b',
                backend_config=backend_config)
response = pipe(['Hi, pls intro yourself', '上海是'])
print(response)

运行结果如下:

6. LMDeploy运行视觉多模态大模型

6.1 llava-v1.6-7b

开发机显存需要24G左右,安装llava依赖库:

pip install git+https://github.com/haotian-liu/LLaVA.git@4e2277a060da264c4f21b364c867cc622c945874

运行以下代码:

from lmdeploy.vl import load_image
from lmdeploy import pipeline, TurbomindEngineConfig


backend_config = TurbomindEngineConfig(session_len=8192) # 图片分辨率较高时请调高session_len
# pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config) 非开发机运行此命令
pipe = pipeline('/root/share/new_models/liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config)

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
response = pipe(('describe this image', image))
print(response)

结果如下:

也可以通过Gradio来运行llava模型:

import gradio as gr
from lmdeploy import pipeline, TurbomindEngineConfig


backend_config = TurbomindEngineConfig(session_len=8192) # 图片分辨率较高时请调高session_len
# pipe = pipeline('liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config) 非开发机运行此命令
pipe = pipeline('/root/share/new_models/liuhaotian/llava-v1.6-vicuna-7b', backend_config=backend_config)

def model(image, text):
    if image is None:
        return [(text, "请上传一张图片。")]
    else:
        response = pipe((text, image)).text
        return [(text, response)]

demo = gr.Interface(fn=model, inputs=[gr.Image(type="pil"), gr.Textbox()], outputs=gr.Chatbot())
demo.launch()   

转发端口后,结果如下:

这次描述结果不太对,可以直接在网页clear以后再上传图片,换一张试一下:

6.2 InternVL2-26B

InternVL2-26B需要约70+GB显存,但是为了能够在50%A100上运行,需要先进行量化操作,这也是量化本身的意义所在——即降低模型部署成本。

由于教程不同,这里旧版本的lmdeploy尚不支持InternVL2-26B,需要重新升级一下版本:

conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

lmdeploy lite auto_awq \
   /root/share/new_models/OpenGVLab/InternVL2-26B \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/models/InternVL2-26B-w4a16-4bit

输入以下指令,启用量化后的模型

lmdeploy serve api_server \
    /root/models/InternVL2-26B-w4a16-4bit \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.1\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

启动后观测显存占用情况:

推理如下:

7. LMDeploy之FastAPI与Function call

7.1 FastAPI

输入指令启动API服务器:

lmdeploy serve api_server \
    /root/models/internlm2-chat-1_8b-4bit \
    --model-format awq \
    --cache-max-entry-count 0.4 \
    --quant-policy 4 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

然后运行以下代码:

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI


# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
    api_key='YOUR_API_KEY',  
    # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
    base_url="http://0.0.0.0:23333/v1"  
    # 指定API的基础URL,这里使用了本地地址和端口
)

# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id

# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
  model=model_name,  
  # 指定要使用的模型ID
  messages=[  
  # 定义消息列表,列表中的每个字典代表一个消息
    {"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  
    # 系统消息,定义助手的行为
    {"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"},  
    # 用户消息,询问时间管理的建议
  ],
    temperature=0.8,  
    # 控制生成文本的随机性,值越高生成的文本越随机
    top_p=0.8  
    # 控制生成文本的多样性,值越高生成的文本越多样
)

# 打印出API的响应结果
print(response.choices[0].message.content)

终端输出结果如下:

切回第一个终端窗口,会看到如下信息,这代表其成功的完成了一次用户问题GET与输出POST:

7.2 Function call

Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。

还是启动API服务器,目前LMDeploy在0.5.3版本中支持了对InternLM2, InternLM2.5和llama3.1这三个模型,选用InternLM2.5封装API:

lmdeploy serve api_server \
    /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

运行以下代码:

from openai import OpenAI


def add(a: int, b: int):
    return a + b


def mul(a: int, b: int):
    return a * b


tools = [{
    'type': 'function',
    'function': {
        'name': 'add',
        'description': 'Compute the sum of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}, {
    'type': 'function',
    'function': {
        'name': 'mul',
        'description': 'Calculate the product of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)

messages.append({
    'role': 'assistant',
    'content': response.choices[0].message.content
})
messages.append({
    'role': 'environment',
    'content': f'3+5={func1_out}',
    'name': 'plugin'
})
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)

结果如下,可以看出InternLM2.5将输入'Compute (3+5)*2'根据提供的function拆分成了"加"和"乘"两步,第一步调用function add实现加,再于第二步调用function mul实现乘,再最终输出结果16。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值