【RAG】面向实时智能客服场景的RAG问答系统应用

前言

这篇文章探讨了如何在工业环境中利用大型语言模型(LLMs)进行问题回答,特别是针对客服场景提供上下文相关的响应预测。然而,为了在行业环境中针对特定客户查询提供精确和相关的信息,LLMs需要访问全面的知识库以避免产生幻觉。面对这个问题,RAG技术应运而生。然而,使用RAG开发实际应用中的问答框架仍面临几个挑战:1)数据可用性问题,2)生成内容质量的评估,3)昂贵的人工评估成本。文章提出了一个端到端的RAG框架,用于解决工业环境中的问题回答问题。

响应预测系统示例

  • A部分:当用户提出一个有效的查询时,系统会检索相关的文档,并从中生成适当的响应供代理选择。代理可以直接使用生成的响应,点击即可。

  • B部分:对于超出领域范围的查询,系统会引导用户提出相关的问题。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • A部分:手动搜索相关文档来响应查询。
  • B部分:基于BERT的系统,该系统从给定查询中提取相关的问答对,并为代理提供响应建议。
  • C部分:提出的RAG LLM系统,其中LLM检索相关知识库文章,并根据查询和检索到的文章生成答案。

方法

端到端的RAG框架

数据集

构建一个包含领域特定问题和对应答案的知识库文档的数据集。然后,利用LLM从公司文档中生成相关的问题-答案对,并从开源数据集中补充域外问题和答案。

RAG

RAG架构的主要组件包括检索器和生成器。检索器从知识库中检索相关文档,生成器则利用这些文档和历史聊天记录生成响应建议。

  • 检索器

    向量嵌入:使用不同的嵌入模型来表示查询和文档,以便计算它们之间的相似度。比较了Universal Sentence Encoder (USE)、Google的Vertex AI嵌入模型和SBERT-all-mpnet-base-v2等嵌入策略。实验结果表明,Vertex AI-textembedding-gecko@001(768)嵌入与ScaNN检索结合效果最佳。

    检索策略:测试了多种检索算法,包括ScaNN和KNN HNSW。ScaNN因其在大规模数据集上的高效处理和高检索准确性而被选用。设置了不同的检索阈值,以确保不相关的文档不会被检索并传递给生成器。

  • 生成器

    LLM使用PaLM2基础模型(text-bison, text-unicorn)进行文本生成,确保在企业许可和安全要求方面具有优势。

实验

ScaNN检索器在大多数情况下优于KNN HNSW,Vertex AI嵌入模型在捕捉复杂语义关系方面表现最佳。设置检索阈值为0.7可以有效减少不必要的文档检索,提高响应生成效率。


RAG LLM在准确性、幻觉率和缺失率方面均优于现有的BERT模型。

总结

这篇文章主要介绍了RAG在传统智能客服场景的一个应用,减轻人工客服的工作负担。结果表明,检索相关知识库文档并利用LLMs生成响应比BERT响应更具上下文相关性和准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值