[论文笔记]E5

这篇论文介绍了E5模型,一种通过对比学习训练的文本嵌入方法,旨在提供通用的单一向量文本表示。E5模型在无监督和有监督的数据上进行训练,不依赖于大量标签数据或低质量合成文本对,而是使用CCPairs数据集进行对比预训练。实验证明,E5模型在BEIR和MTEB基准测试上表现出色,特别是在信息检索和文本匹配任务上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

今天又带来一篇文本匹配/文本嵌入的笔记:Text Embeddings by Weakly-Supervised Contrastive Pre-training。中文题目是 基于弱监督对比预训练计算文本嵌入。

本篇工作提出了E5模型(EmbEddings from bidirEctional Encoder rEpresentations)。该模型以带弱监督信号的对比学习方式训练的。

总体介绍

文本嵌入是任意长度文本的低维(稠密)向量表示,在许多自然语言处理任务中起着关键作用,如大规模检索。尽管预训练语言模型像BERT和GPT可以产生科迁移的文本表示,但对于检索和文本匹配等任务来说,更希望得到单一向量嵌入的效率和多功能性更高。为了获得更好的文本嵌入,对比学习通常是增强文本对的序列级的首选框架。比如,GTR1和Sentence-T52

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值