引言
今天又带来一篇文本匹配/文本嵌入的笔记:Text Embeddings by Weakly-Supervised Contrastive Pre-training。中文题目是 基于弱监督对比预训练计算文本嵌入。
本篇工作提出了E5模型(EmbEddings from bidirEctional Encoder rEpresentations)。该模型以带弱监督信号的对比学习方式训练的。
总体介绍
文本嵌入是任意长度文本的低维(稠密)向量表示,在许多自然语言处理任务中起着关键作用,如大规模检索。尽管预训练语言模型像BERT和GPT可以产生科迁移的文本表示,但对于检索和文本匹配等任务来说,更希望得到单一向量嵌入的效率和多功能性更高。为了获得更好的文本嵌入,对比学习通常是增强文本对的序列级的首选框架。比如,GTR1和Sentence-T52