论文阅读:Development of a Navigation Solution for an Image Aided Automatic Landing System

本文探讨了一种基于视觉量测的导航解决方案,用于无人机的自动着陆。研究了线特征在估计相机位姿中的应用,以及分辨率、像素误差、HAT高度等因素对导航性能的影响。通过误差卡尔曼滤波改善了定位精度,展示了不同条件下的位置误差和优化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Development of a Navigation Solution for an Image Aided Automatic Landing System

2013年

根据运行飞行阶段、监视控制器跟踪性能和给定的相关测量或已知环境数据,必须为导航系统误差置信区间定义最低性能水平。全自动着陆操纵的位置准确性要求适用于载人飞机的低能见度操作。然而,这些要求不考虑总系统误差,并将控制系统和导航系统视为不相互交换信息的黑匣子。此外,假定在机场安装了基于地面的着陆引导系统。因此,必须单独评估所需的导航准确性水平,特别是对于无人机自主着陆操纵的情况。

为了评估系统总体性能,假设只有机载传感器使用,没有陆地设施安装,例如ILS等。为了进近时保持在着陆区域内,广域增强的卫星导航系统如WAAS或者EGNOS性能是不够的。

在导航性能中,侧向和垂直方向的精度非常重要。

文章分为五部分

  • 视觉量测方程
  • 数据融合算法
  • 仿真实验
  • 参数影响

这里只重点讨论视觉量测方程的推导

视觉量测方程

文章的思路是先检测飞机降落时,图像中的跑道线,由于跑道线是直线,而且3维坐标已知,所以可以当成线特征,来估计相机位姿。

5.3 更新
这几天恶补了线特征基础,终于看明白了。

首先一般线特征位姿估计用的都是下面这个式子

[ n c d c ] = [ R c w [ t c w ] × R c w 0 R c w ] [ n w d w ] ⇒ n c = R c w n w + [ t c w ] × R c w d w \begin{align} \begin{aligned} \begin{bmatrix} n_c \\ d_c \end{bmatrix} &=\begin{bmatrix} R_{cw} & [t_{cw}]_\times R_{cw} \\ 0 & R_{cw} \end{bmatrix} \begin{bmatrix} n_w \\ d_w \end{bmatrix} \end{aligned}\\ \Rightarrow n_c =R_{cw}n_w+[t_{cw}]_\times R_{cw}d_w \end{align} [ncdc]=[Rcw0[tcw]×RcwRcw][nwdw]nc=Rcwnw+[tcw]×Rcwdw

然而作者用的却是这个式子
[ l ] × = P L P \begin{equation} [\mathbf{l}]_\times=PLP \end{equation} [l]×=PLP
其中 P = [ R , c ] P=[R, c] P=[R,c](这里的 c c c就是之前的 t t t),
L = [ [ m ] × l − l T 0 ] L=\begin{bmatrix} [\mathbf{m}]_\times & \mathbf{l} \\ -\mathbf{l}^T & 0 \end{bmatrix} L=[[m]×l

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值