【超详图文】多少样本量用 t分布 OR 正态分布


作者:小猪快跑

基础数学&计算数学,从事优化领域7年+,主要研究方向:MIP求解器、整数规划、随机规划、智能优化算法

选择使用t分布还是正态分布通常取决于样本量的大小以及是否知道总体的标准差。

  1. 正态分布

    • 当样本量较大(通常n > 30)时,根据中心极限定理,无论原始总体分布是什么形状,样本均值的分布将接近正态分布。
    • 如果总体标准差已知,并且你对总体均值进行推断,也可以使用正态分布,即使样本量较小。
  2. t分布

    • 当样本量较小(n ≤ 30),并且总体标准差未知时,应该使用t分布。t分布与正态分布相似,但具有更宽的尾部,以反映小样本时更大的不确定性。
    • t分布依赖于自由度的概念,自由度等于样本量减一(df = n - 1)。随着样本量增加,t分布逐渐逼近正态分布。

总结来说,如果你有一个小样本,并且不知道总体标准差,那么你应该使用t分布来进行统计推断。如果你有一个大样本,或者你知道总体标准差,那么你可以使用正态分布。在实际应用中,如果样本量足够大,两种分布之间的差异变得很小,这时可以认为两者是等价的。

如有错误,欢迎指正。如有更好的算法,也欢迎交流!!!——@小猪快跑

相关教程

相关文献

预备知识

Lindeberg-Lévy中心极限定理

{ X n } \{ X_n \} { Xn} 是独立同分布的随机变量序列, 且 E ( X n ) = μ E (X_n) = \mu E(Xn)=μ, V a r ( X n ) = σ 2 > 0 \mathrm{Var} (X_n)= \sigma^2 > 0 Var(Xn)=σ2>0.

Y n ∗ = X 1 + X 2 + ⋯ + X n − n μ σ n Y_n^* = \frac{X_1 + X_2 + \dotsb + X_n - n \mu}{\sigma \sqrt{n}} Yn=σn X1+X2++Xnnμ
则对任意实数 $ y $, 有

lim ⁡ n → + ∞ P ( Y n ∗ ≤ y ) = Φ ( y ) = 1 2 π ∫ − ∞ y e − t 2 / 2 d t . \lim_{n \to +\infty} P ( Y_n ^* \leq y ) = \Phi (y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^y \mathrm{e}^{-t^2/2} \mathrm{d} t. n+limP(Yny)=Φ(y)=2π 1yet2/2dt.

预备定理

x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_n x1,x2,,xn 是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2) 的样本 ,其样本均值和样本方差分别为

x ‾ = 1 n ∑ i = 1 n x i 和 s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) 2 \overline{x}=\frac{1}{n}\sum_{i=1}^{n}x_{i}\text{和}s^{2}=\frac{1}{n-1}\sum_{i=1}^{n}\left(x_{i}-\overline{x}\right)^{2} x=n1i=1nxis2=n11i=1n(xix)2
则有

  1. x ˉ \bar{x} xˉ s 2 s^2 s2 相互独立

  2. x ‾ ∼ N ( μ , σ 2 / n ) \overline{x}\sim N(\mu,\sigma^2/n) xN(μ,σ2/n)

  3. ( n − 1 ) s 2 σ 2 ∼ X 2 ( n − 1 ) \frac{(n-1)s^2}{\sigma^2}\sim X^2(n-1) σ2(n1)s2X2(n1)

证明:

x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 的联合密度函数为
p ( x 1 , x 2 , ⋯   , x n ) = ( 2 π σ 2 ) − n / 2 e − ∑ i = 1 n ( x i − μ ) 2 2 σ 2 = ( 2 π σ 2 ) − n / 2 e x p { − ∑ i = 1 n x i 2 − 2 n x ˉ μ + n μ 2 2 σ 2 } p(x_{1},x_{2},\cdots,x_{n})=(2\pi\sigma^{2})^{-n/2}\mathrm{e}^{-\sum_{i=1}^{n}\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}}=(2\pi\sigma^{2})^{-n/2}\mathrm{exp}\Big\{-\frac{\sum_{i=1}^{n}x_{i}^{2}-2n\bar{x}\mu + n\mu^{2}}{2\sigma^{2}}\Big\} p(x1,x2,,xn)=(2πσ2)n/2ei=1n2σ2(xiμ)2=(2πσ2)n/2exp{ 2σ2i=1nxi22nxˉμ+nμ2}

X = ( x 1 , x 2 , ⋯   , x n ) T X=(x_1,x_2,\cdots,x_n)^{\mathrm{T}} X=(x1,x2,,xn)T,取一个 n n n维正交矩阵 A A A ,其第一行的每一个元素均为1/ n \sqrt{n} n ,如
A = (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值