【附代码&原理】偏正态分布的数据处理方法


作者:小猪快跑

基础数学&计算数学,从事优化领域7年+,主要研究方向:MIP求解器、整数规划、随机规划、智能优化算法

偏正态分布(Skew Normal Distribution)是一种扩展了标准正态分布的连续概率分布,它允许数据具有偏斜性。标准正态分布是对称的,而偏正态分布则可以是左偏或右偏的。偏正态分布在金融、经济、生物统计等领域中广泛应用,因为现实世界中的许多数据集往往不是完全对称的。

如有错误,欢迎指正。如有更好的算法,也欢迎交流!!!——@小猪快跑

相关教程

基本信息

偏正态分布(Skew Normal Distribution)是一种扩展了标准正态分布的连续概率分布,它允许数据具有偏斜性。标准正态分布是对称的,而偏正态分布则可以是左偏或右偏的。偏正态分布在金融、经济、生物统计等领域中广泛应用,因为现实世界中的许多数据集往往不是完全对称的。

数学定义

偏正态分布由三个参数定义:

  1. 位置参数(Location Parameter) ξ \xi ξ:表示分布的中心位置。
  2. 尺度参数(Scale Parameter) ω \omega ω:控制分布的扩散程度,类似于标准差。
  3. 形状参数(Shape Parameter) α \alpha α:控制分布的偏斜方向和程度。当 α = 0 \alpha = 0 α=0 时,偏正态分布退化为标准正态分布。

偏正态分布的概率密度函数(PDF)可以表示为:

f ( x ; ξ , ω , α ) = 2 ω ϕ ( x − ξ ω ) Φ ( α ( x − ξ ω ) ) f(x; \xi, \omega, \alpha) = \frac{2}{\omega} \phi\left(\frac{x - \xi}{\omega}\right) \Phi\left(\alpha \left(\frac{x - \xi}{\omega}\right)\right) f(x;ξ,ω,α)=ω2ϕ(ωxξ)Φ(α(ωxξ))

其中:

  • ϕ ( z ) \phi(z) ϕ(z) 是标准正态分布的密度函数:
    ϕ ( z ) = 1 2 π e − z 2 2 \phi(z) = \frac
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值