作者:小猪快跑
基础数学&计算数学,从事优化领域7年+,主要研究方向:MIP求解器、整数规划、随机规划、智能优化算法
偏正态分布(Skew Normal Distribution)是一种扩展了标准正态分布的连续概率分布,它允许数据具有偏斜性。标准正态分布是对称的,而偏正态分布则可以是左偏或右偏的。偏正态分布在金融、经济、生物统计等领域中广泛应用,因为现实世界中的许多数据集往往不是完全对称的。
如有错误,欢迎指正。如有更好的算法,也欢迎交流!!!——@小猪快跑
相关教程
- 常用分布的数学期望、方差、特征函数
- 【推导过程】常用离散分布的数学期望、方差、特征函数
- 【推导过程】常用连续分布的数学期望、方差、特征函数
- Z分位数速查表
- 【概率统计通俗版】极大似然估计
- 【附代码&原理】正态分布检验
- 【附代码&原理】偏正态分布的数据处理方法
- 【超详图文】多少样本量用 t分布 OR 正态分布
- 【推导过程】常用共轭先验分布
- 【机器学习】【通俗版】EM算法(待更新)
基本信息
偏正态分布(Skew Normal Distribution)是一种扩展了标准正态分布的连续概率分布,它允许数据具有偏斜性。标准正态分布是对称的,而偏正态分布则可以是左偏或右偏的。偏正态分布在金融、经济、生物统计等领域中广泛应用,因为现实世界中的许多数据集往往不是完全对称的。
数学定义
偏正态分布由三个参数定义:
- 位置参数(Location Parameter) ξ \xi ξ:表示分布的中心位置。
- 尺度参数(Scale Parameter) ω \omega ω:控制分布的扩散程度,类似于标准差。
- 形状参数(Shape Parameter) α \alpha α:控制分布的偏斜方向和程度。当 α = 0 \alpha = 0 α=0 时,偏正态分布退化为标准正态分布。
偏正态分布的概率密度函数(PDF)可以表示为:
f ( x ; ξ , ω , α ) = 2 ω ϕ ( x − ξ ω ) Φ ( α ( x − ξ ω ) ) f(x; \xi, \omega, \alpha) = \frac{2}{\omega} \phi\left(\frac{x - \xi}{\omega}\right) \Phi\left(\alpha \left(\frac{x - \xi}{\omega}\right)\right) f(x;ξ,ω,α)=ω2ϕ(ωx−ξ)Φ(α(ωx−ξ))
其中:
- ϕ ( z ) \phi(z) ϕ(z) 是标准正态分布的密度函数:
ϕ ( z ) = 1 2 π e − z 2 2 \phi(z) = \frac