浅谈故障诊断与寿命预测

1、故障诊断与寿命预测方法的分类

本人也是轴承的故障诊断开始的,浅显地给出本人关于当前故障诊断与寿命预测方法的分类(有更好的分类欢迎留言、评论),如下图所示:

故障预测与健康管理英文全称为Prognostics and Health Management,简写为PHM。

在我看来,经典故障诊断研究、故障模式识别研究和剩余使用寿命(RUL)预测研究三者可能使用的方法存在相同之处,但是三者的落脚点不同。它们的对应关系如下图:

经典故障诊断研究→提取故障特征频率

故障模式识别研究→判别信号的故障模式

剩余寿命预测研究→预测不同时刻的RUL

2、经典的故障诊断研究

经典的故障诊断研究主要是利用信号处理方法(时域、频域和时频域),如经验模态分解(EMD)、变分模态分解(VMD)、小波变换、包络谱分析、谱峭度(SK)等方法,进行一系列的信号降噪、提取故障特征研究,最后落脚到提取出对应的故障特征频率,也叫做缺陷频率

此外,以峭度值大小进行故障诊断方法更为经典,但是目前研究不多,可能工程中应用较多,这些方法也不能被忽略。

3、故障模式识别研究

故障模式识别研究,又称为智能故障诊断研究,它主要是利用人工智能技术(机器学习和深度学习),如支持向量机、KNN、决策树、卷积神经网络、长短时记忆网络、门控循环单元等方法,进行特征提取和故障模式识别研究,最后落脚到这个输入数据的故障模式是什么,在轴承里面是内圈故障?外圈故障?保持架故障?滚动体故障?正常?

目前,智能故障诊断研究一般都会提供一个判别准确率的矩阵,也叫做混淆矩阵,如下图所示,表示真实标签和预测标签的分布

举个例子,输入一系列的猫、狗的图片,利用人工智能技术,要能自动地判别不同图片的标签是猫还是狗。

4、剩余使用寿命预测研究

​区别与前两者,剩余寿命(remaining useful life, RUL)预测研究更关注关键部件的全寿命运行监测过程,它利用深度神经网络(卷积神经网络、长短时记忆网络、门控循环单元)或者随机过程(维纳过程、伽马过程、威布尔分布,参数估计)方法,最后落脚到预测轴承当前时刻的RUL值,在轴承的研究中就是当前时刻轴承距离完全失效时的时间?5min?10min?(这里5分钟和10分钟是在轴承加速退化试验中的时间分辨率,实际工程中往往应该是5天、10天等)

目前,剩余寿命预测研究一般都会提供一个RUL预测曲线,如下图所示,表示真实RUL与预测RUL的关系。补充一句,真实的RUL是一条斜的直线,只有有了完整的全寿命数据,真实的RUL才能被得知。

后续相关新手案例(matlab代码),将为统一免费公布,欢迎关注!

关注公众号“故障诊断与寿命预测工具箱”,每天进步一点点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值