前言
本文介绍了Efficient Channel Attention(ECA)模块及其在YOLOv11中的结合应用。ECA模块是一种新颖的通道注意力机制,通过快速的1D卷积操作生成通道注意力,在不减少通道维度的情况下捕获跨通道交互,且1D卷积核大小可根据通道维度自适应确定。该模块以轻量方式实现有效通道注意力,能在降低模型复杂性的同时保持性能。我们将ECA模块集成进YOLOv11。实验表明,ECA模块在图像分类、目标检测和实例分割等任务中效率更高,性能优于同类方法。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

摘要
近期研究表明,通道注意力机制在深度卷积神经网络性能优化方面展现出显著潜力,然而现有方法普遍倾向于开发复杂度更高的注意力模块以追求性能提升,这不可避免地导致模型复杂度的显著增加。针对性能与复杂度之间的权衡挑战,本文提出了一种高效通道注意力(ECA)模块,该模块仅需引入少量额外参数即可实现显著的性能增益。通过对SENet中通道注意力机制的深入分析,我们通过实验验证了避免维度缩减操作对于通道注意力学习的重要性,并证明适当的跨通道交互策略能够在显著降低模型复杂度的同时维持优异的性能表现。基于此发现,我们设计了一种无需维度缩减的局部跨通道交互方案,该方案可通过一维卷积操作高效实现。进一步地,我们开发了一种自适应选择一维卷积核尺寸的方法,用于确定局部跨通道交互的有效覆盖范围。所提出的ECA模块在效率与效能方面均表现出色,以ResNet50主干网络为例,该模块仅增加80个参数和4.7e-4 GFLOPs计算量(相较于基线模型的24.37M参数和3.86 GFLOPs),同时实现Top-1分类准确率超过2%的提升。我们在图像分类、目标检测及实例分割等多个任务上,采用ResNets和MobileNetV2作为主干网络对ECA模块进行了全面评估,实验结果表明该模块在保持更高计算效率的同时,性能表现显著优于同类方法。
订阅专栏 解锁全文
3万+

被折叠的 条评论
为什么被折叠?



