前言
本文介绍了将大型选择性核网络(LSKNet)与YOLOv11相结合的方法。LSKNet引入了LSKblock Attention注意力机制,能动态调整感受野,适应不同目标的上下文特征。该网络由LSK module、LSK Block等组成,通过解耦大核卷积和空间选择机制,有效处理不同目标的广泛上下文。我们将LSKNet引入YOLOv11,对相关代码进行修改和注册,并配置了yolov11 - LSKNet.yaml文件。通过实验脚本进行训练,结果显示该结合方式在目标检测任务中具有一定效果。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
文章目录
介绍

摘要
近期遥感目标检测研究主要聚焦于提升定向边界框的表征能力,然而普遍忽视了遥感场景中特有的先验知识体系。此类先验知识具有重要价值,因为在缺乏充分长范围上下文参考的情况下,微小遥感目标易出现误检现象,且不同类型目标所需的长范围上下文特征存在显著差异。针对这一问题,本文充分考虑上述先验知识,创新性地提出了大型选择性核网络(LSKNet)。该网络能够动态调整其大尺度空间感受野,从而更精确地建模遥感场景中各类目标的上下文范围特征。据我们所知,这是首次在遥感目标检测领域系统探索大型选择性核机制的研究工作。在无需引入额外复杂设计的前提下,我们提出的轻量级LSKNet架构在标准遥感图像分类、目标检测及语义分割基准测试中均实现了新的最先进性能水平。
创新点
- LSKblock Attention:LSKNet引入了LSKblock Attention作为一种注意力机制,通过空间选择性机制动态调整感受野,以更有效地处理不同目标类型的广泛上下文。这种机制允许模型根据输入自适应地确定大型核的权重,从而在空间维度上调整每个目标的感受野。
- 大型选择性核网络:LSKNet是首个在遥感目标检测领域探索大型和选择性核机制的模型。它通过加权处理大型深度核的特
订阅专栏 解锁全文
17万+

被折叠的 条评论
为什么被折叠?



