一、上下文联系与记忆
- 概念阐述:在交互过程中,第二次交互与前一次交互存在的关联关系被称为上下文记忆。
- 长度说明:在deepseek的R1模型中,上下文长度可达64k token,大约对应3到4万字的中文字符。
- 理解示例
- 示例一:先前交互中询问创建贪吃蛇游戏,当前交互询问提示词,模型思考时会体现出先前问题与当前问题的关联,观察模型思考过程比仅看结果更具启发性。
- 示例二:先询问模型是什么,接着询问有哪些技巧,模型会提及需要回顾之前的问题,由此可见上下文确实存在关联。
二、相关注意事项
- 上下文记忆的有限性
- 问题描述:上下文记忆并非无限,随着对话时间延长,模型处理过去信息的能力受限,可能会忘记最初的聊天内容。
- 具体例子:当一次对话文本内容超过3万字,模型可能忘掉最开始提出的问题,在写代码场景中这种情况尤为明显。
- 输出长度限制
- 限制情况:多数大模型单次输出长度控制在4K或8K,即单次交互最多产生2到4000个中文字符。
- 应对方法
- 翻译需求:若要翻译万字长文,可采用一段一段翻译的方式,或者通过自己写代码调用API,让模型多次执行翻译任务。
- 写文章需求:先让R1梳理框架,列出提纲目录,然后按照目录章节单独与模型交互,获取各章节内容思路。
- 清除上下文记忆的需求与方法
- 需求场景:当先前询问体育相关问题,之后询问数学问题时,不希望模型因上下文记忆导致数据出现偏差(如数学问题答案受体育相关提问的影响)。
- 解决方法
- 开启新对话:在客户端直接点击开启新对话功能;在官网中点击开启新对话,这样可清除上下文记忆。
- 在当前对话框操作:在新问题提出前,输入“回复此条对话前,请忽略我前面的所有的对话”,模型会清除之前的历史记录并重新开始回答问题 。